【题目】平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= . ![]()
【答案】24°
【解析】解:正三角形的每个内角是:
180°÷3=60°,
正方形的每个内角是:
360°÷4=90°,
正五边形的每个内角是:
(5﹣2)×180°÷5
=3×180°÷5
=540°÷5
=108°,
正六边形的每个内角是:
(6﹣2)×180°÷6
=4×180°÷6
=720°÷6
=120°,
则∠3+∠1﹣∠2
=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)
=30°+12°﹣18°
=24°.
所以答案是:24°.
【考点精析】掌握多边形内角与外角和正多边形和圆是解答本题的根本,需要知道多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°;圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等.
科目:初中数学 来源: 题型:
【题目】填空,完成下列说理过程
如图,点A,O,B在同一条直线上, OD,OE分别平分∠AOC和∠BOC.
![]()
(1)求∠DOE的度数;
(2)如果∠COD=65°,求∠AOE的度数.
解:(1)如图,因为OD是∠AOC的平分线,
所以∠COD =
∠AOC.
因为OE是∠BOC 的平分线,
所以 =
∠BOC.
所以∠DOE=∠COD+ =
(∠AOC+∠BOC)=
∠AOB= °.
(2)由(1)可知∠BOE=∠COE = -∠COD= °.
所以∠AOE= -∠BOE = °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在
中,
平分
,
平分
.
(1)若
,则
的度数为______;
(2)若
,直线
经过点
.
①如图2,若
,求
的度数(用含
的代数式表示);
②如图3,若
绕点
旋转,分别交线段
于点
,试问在旋转过程中
的度数是否会发生改变?若不变,求出
的度数(用含
的代数式表示),若改变,请说明理由:
③如图4,继续旋转直线
,与线段
交于点
,与
的延长线交于点
,请直接写出
与
的关系(用含
的代数式表示).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B 在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.
(1)求∠ACB的大小;
(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;
(3)如图3,过C作直线与AB交于F,且满足∠AGO-∠BCF=45°,求证:CF∥OB.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD满足AB:BC=1:
,把矩形ABCD对折,使CD与AB重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为( )![]()
A.4 ![]()
B.4
C.2
D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点的位置如图所示,将△ABC水平向左平移3个单位,再竖直向下平移2个单位。
(1)读出△ABC的三个顶点坐标;
(2)请画出平移后的△A′B′C′,并直接写出点A/、B′、C′的坐标;
(3)求平移以后的图形的面积 。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0),反比例函数图象经过点C,直线AC交双曲线另一支于点E,连接DE,CD,设反比例函数解析式为y1=
,直线AC解析式为y2=ax+b.![]()
(1)求反比例函数解析式;
(2)当y1<y2时,求x的取值范围;
(3)求△CDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:
![]()
(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.
(2)该地区已经移植这种树苗5万棵.
①估计这种树苗成活___________万棵.
②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com