精英家教网 > 初中数学 > 题目详情

【题目】平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=

【答案】24°
【解析】解:正三角形的每个内角是:

180°÷3=60°,

正方形的每个内角是:

360°÷4=90°,

正五边形的每个内角是:

(5﹣2)×180°÷5

=3×180°÷5

=540°÷5

=108°,

正六边形的每个内角是:

(6﹣2)×180°÷6

=4×180°÷6

=720°÷6

=120°,

则∠3+∠1﹣∠2

=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)

=30°+12°﹣18°

=24°.

所以答案是:24°.

【考点精析】掌握多边形内角与外角和正多边形和圆是解答本题的根本,需要知道多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°;圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】填空,完成下列说理过程

如图,点AOB在同一条直线上, ODOE分别平分∠AOC和∠BOC

1)求∠DOE的度数;

2)如果∠COD=65°,求∠AOE的度数.

解:(1)如图,因为OD是∠AOC的平分线,

所以∠COD =AOC

因为OE是∠BOC 的平分线,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,平分平分

(1),则的度数为______

(2),直线经过点

①如图2,若,求的度数(用含的代数式表示)

②如图3,若绕点旋转,分别交线段于点,试问在旋转过程中的度数是否会发生改变?若不变,求出的度数(用含的代数式表示),若改变,请说明理由:

③如图4,继续旋转直线,与线段交于点,与的延长线交于点,请直接写出的关系(用含的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B 在直线n上运动,ACBC分别是∠BAO和∠ABO的角平分线.

1)求∠ACB的大小;

2)如图2,若BDAOB的外角∠OBE的角平分线,BDAC相交于点D,点AB在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;

3)如图3,过C作直线与AB交于F,且满足∠AGO-∠BCF=45°,求证:CFOB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD满足AB:BC=1: ,把矩形ABCD对折,使CD与AB重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为( )

A.4
B.4
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC的三个顶点的位置如图所示,将ABC水平向左平移3个单位,再竖直向下平移2个单位。

1)读出ABC的三个顶点坐标;

2)请画出平移后的ABC,并直接写出点A/BC的坐标;

3)求平移以后的图形的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0),反比例函数图象经过点C,直线AC交双曲线另一支于点E,连接DE,CD,设反比例函数解析式为y1= ,直线AC解析式为y2=ax+b.

(1)求反比例函数解析式;
(2)当y1<y2时,求x的取值范围;
(3)求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:

(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.

(2)该地区已经移植这种树苗5万棵.

①估计这种树苗成活___________万棵.

②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=CD,点EFGH分别是BCADBDAC的中点,猜想四边形EHFG的形状并说明理由.

查看答案和解析>>

同步练习册答案