精英家教网 > 初中数学 > 题目详情

如图,点D为正△ABC内一点,DB=DA,BF=AB,∠1=∠2,求∠BFD的度数.

答案:
解析:

  解答:连结DC,∵△ABC为正三角形,∴BC=AC.

  又BD=AD,DC=DC,∴△BCD≌△ACD.∴∠BCD=∠ACD

  又∵∠BCD+∠ACD=60°,∴∠BCD=30°,

  ∵BD=BD,∠1=∠2,BC=AB=BF,

  ∴△BCD≌△BFD,∴∠BFD=∠BCD=30°.

  评析:构造两对全等三角形,实现角的转换是解决本题的关键.


提示:

由题意不能直接求∠F的度数,可利用辅助线CD构造全等三角形转化求∠F度数.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:Rt△ABC斜边上的高为2.4,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合,直角顶点C落在y轴正半轴上,点A的坐标为(-1.8,0).
(1)求点B的坐标和经过点A、B、C的抛物线的关系式;
(2)如图①,点M为线段AB上的一个动点(不与点A、B重合),MN∥AC,交线段BC于点N,MP∥BC,交线段AC于点P,连接PN,△MNP是否有最大面积?若有,求出△MNP的最大面积;若没有,请说明理由;
(3)如图②,直线l是经过点C且平行于x轴的一条直线,如果△ABC的顶点C在直线l上向右平移m,(2)中的其它条件不变,(2)中的结论还成立吗?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•房山区一模)已知:如图,点P是线段AB上的动点,分别以AP、BP为边向线段AB的同侧作正△APC和正△BPD,AD和BC交于点M.
(1)当△APC和△BPD面积之和最小时,直接写出AP:PB的值和∠AMC的度数;
(2)将点P在线段AB上随意固定,再把△BPD按顺时针方向绕点P旋转一个角度α,当α<60°时,旋转过程中,∠AMC的度数是否发生变化?证明你的结论.
(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC的大小是否会发生变化?若变化,请写出∠AMC的度数变化范围;若不变化,请写出∠AMC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:Rt△ABC斜边上的高为2.4,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合,直角顶点C落在y轴正半轴上,点A的坐标为(-1.8,0).
(1)求点B的坐标和经过点A、B、C的抛物线的关系式;
(2)如图①,点M为线段AB上的一个动点(不与点A、B重合),MN∥AC,交线段BC于点N,MP∥BC,交线段AC于点P,连接PN,△MNP是否有最大面积?若有,求出△MNP的最大面积;若没有,请说明理由;
(3)如图②,直线l是经过点C且平行于x轴的一条直线,如果△ABC的顶点C在直线l上向右平移m,(2)中的其它条件不变,(2)中的结论还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,点P是线段AB上的动点,分别以AP、BP为边向线段AB的同侧作正△APC和正△BPD,AD和BC交于点M.
(1)当△APC和△BPD面积之和最小时,直接写出AP:PB的值和∠AMC的度数;
(2)将点P在线段AB上随意固定,再把△BPD按顺时针方向绕点P旋转一个角度α,当α<60°时,旋转过程中,∠AMC的度数是否发生变化?证明你的结论.
(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC的大小是否会发生变化?若变化,请写出∠AMC的度数变化范围;若不变化,请写出∠AMC的度数.

查看答案和解析>>

同步练习册答案