(1)解:设DG为x,
由题意得:BG=1+x,CG=1-x,
由勾股定理得:BG
2=BC
2+CG
2,
有:(1+x)
2=1
2+(1-x)
2,
解得:

.
∴DG=

;
(2)①证明:连接EG,
∵△FBE是由△ABE翻折得到的,
∴AE=FE,∠EFB=∠EAB=90°,
∴∠EFG=∠EDG=90°.
∵AE=DE,
∴FE=DE.
∵EG=EG,
∴Rt△EFG≌Rt△EDG(HL).
∴DG=FG;
②解:若G是CD的中点,则DG=CG=

,
在Rt△BCG中,

,
∴AD=

.
③解:由题意AB∥CD,
∴∠ABG=∠CGB.
∵△FBE是由△ABE翻折得到的,
∴∠ABE=∠FBE=

∠ABG,
∴∠ABE=

∠CGB.
∴若△ABE与△BCG相似,则必有∠ABE=∠CBG=30°.
在Rt△ABE中,AE=ABtan∠ABE=

,
∴AD=2AE=

.
分析:(1)首先设DG为x,则由正方形的性质即可求得BG与CG的值,利用勾股定理构造方程,解方程即可求得DG的值;
(2)①首先连接EG,由△FBE是由△ABE翻折得到的,利用HL,即可求得Rt△EFG≌Rt△EDG,则可证得DG=FG;
②由G是CD的中点,得到DG与CG的值,在Rt△BCG中,利用勾股定理即可求得AD的长;
③由平行线与翻折变换的性质,易得:∠ABE=

∠CGB,又由相似三角形的性质与三角函数的性质,即可求得AD的值.
点评:此题考查了翻折变换的性质,相似三角形的性质,全等三角形的判定与性质以及勾股定理等知识.此题综合性很强,注意数形结合与方程思想的应用.