【题目】如图,在梯形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC,分别交边AB、CD于点E、F,连接CE、AF.
(1)求证:四边形AECF是菱形;
(2)若EF=4,tan∠OAE=,求四边形AECF的面积.
【答案】(1)证明详见解析;(2)20.
【解析】
试题分析:(1)运用“对角线互相垂直平分的四边形是菱形”判定,已知EF⊥AC,AO=OC,只需要证明OE=OF即可,用全等三角形得出;
(2)菱形的面积可以用对角线积的一半来表示,由已知条件,解直角三角形AOE可求AC、EF的长度.
试题解析:(1)证明:方法1:
∵AB∥DC,
∴∠1=∠2.
在△CFO和△AEO中,∠1=∠2,∠FOC=∠EOA,OC=OA,
∴△CFO≌△AEO,
∴OF=OE,
又∵OA=OC,
∴四边形AECF是平行四边形.
∵EF⊥AC,
∴四边形AECF是菱形.
方法2:证△AEO≌△CFO同方法1,
∴CF=AE,
∵CF∥AE,
∴四边形AFCE是平行四边形.
∵OA=OC,EF⊥AC,
∴EF是AC的垂直平分线,
∴AF=CF,
∴四边形AECF是菱形.
(2)解:∵四边形AECF是菱形,EF=4,
∴OE=EF=×4=2.
在Rt△AEO中,
∵tan∠OAE=,
∴OA=5,
∴AC=2AO=2×5=10.
∴=EFAC=×4×10=20.
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( ) ①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.2·1·c·n·j·y
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某军事行动中,对军队部署的方位,采用代码的方式来表示.例如,北偏东30°方向45km的位置与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1∶00,那么这个地点就用代 码010045表示.按这种表示方式,南偏东40°方向78km的位置,可用代码表示为..
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)数学爱好者小森偶然阅读到这样一道竞赛题:
一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF的面积.
小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于 .
(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.请你仿照小森的思考方式,求出这个八边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.
(1)你认为图2中的阴影部分的正方形的边长等于
(2)试用两种不同的方法求图2中阴影部分的面积.
方法1: 方法2:
(3)根据图2你能写出下列三个代数式之间的等量关系吗?
代数式:(x+y)2,(x-y)2,4xy.
(4)根据(3)题中的等量关系,解决如下问题:
若x+y=4,xy=3,则(x-y)2=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年3月,某中学以“每天阅读l小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)请把折线统计图(图1)补充完整;
(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com