精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知反比例函数y=
1x
的图象上有点P,过P点分别作x轴和y轴的垂线,垂足分别为A、B,使四边形OAPB为正方形,又在反比例函数图象上有点P1,过点P1分别作BP和y轴的垂线,垂足分别为A1、B1,使四边形B A1P1B1为正方形,则点P1的坐标是
 
分析:由于四边形OAPB为正方形,则P的纵横坐标相等;且P的反比例函数图象上,由此可以得到P的坐标为(1,1),然后设四边形B A1P1B1的边长为t;又有四边形B A1P1B1为正方形,则点P1的坐标是(t,1+t),代入反比例函数解析式即可求得t,从而求出点P1的坐标.
解答:解:∵四边形OAPB为正方形,
∴P的纵、横坐标相等,
又∵P的反比例函数y=
1
x
的图象上,
∴P的坐标为(1,1),
设四边形B A1P1B1的边长为t,
又∵四边形B A1P1B1为正方形,
则点P1的坐标是(t,1+t),
且其也在反比例函数图象上,
将其坐标代入解析式可得:t=
5
-1
2

故点P1的坐标是(
5
-1
2
5
+1
2
).
点评:此题综合考查了反比例函数,正方形的性质等多个知识点,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案