精英家教网 > 初中数学 > 题目详情
如图,函数y1=k1x+b的图象与函数y2=
k2x
(x>0)的图象交于点A(2,1)、B(1,m),与y轴交于点C(0,3).
(1)求函数y1,y2的表达式和点B的坐标;
(2)观察图象,比较当x>0时y1与y2的大小.
(3)求S△ABO
分析:(1)把点A的坐标代入反比例函数解析式求出k2,从而得到反比例函数解析式,再把点B的坐标代入反比例函数解析式求出m的值,得到点B的坐标,利用待定系数法求一次函数解析求解即可得到y1的表达式;
(2)结合函数图象,根据函数图象在上方的y值大写出;
(3)根据直线解析式求出直线与x轴的交点D的坐标,然后根据S△ABO=S△COD-S△BOC-S△AOD,再根据三角形的面积公式列式计算即可得解.
解答:解:(1)把点A(2,1)代入y2=
k2
x
得,
k2
2
=1,
解得k2=2,
所以y2=
2
x

把点B(1,m)代入反比例函数解析式得,
m=
2
1
=2,
∴点B的坐标为(1,2),
∵函数y1=k1x+b经过点A(2,1),与y轴交于点C(0,3),
2k1+b=1
b=3

解得
k1=-1
b=3

∴y1=-x+3;

(2)由图可知,当0<x<1或x>2时,y1<y2
当1<x<2时,y1>y2
当x=1或2时,y1=y2

(3)如图,设直线与x轴的交点为D,令y=0,则-x+3=0,
解得x=3,
所以,点D的坐标为(3,0),
S△ABO=S△COD-S△BOC-S△AOD
=
1
2
×3×3-
1
2
×3×1-
1
2
×3×1
=
9
2
-
3
2
-
3
2

=
3
2
点评:本题考查了反比例函数图象与一次函数图象的交点问题,主要利用了待定系数法求函数解析,利用函数图象求不等式的解集,以及三角形的面积的求解,先求出两函数的解析式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一次函数y1=k1x+2与反比例函数y2=
k2x
的图象交于点A(4,m)和B(-8精英家教网,-2),与y轴交于点C.
(1)k1=
 
,k2=
 

(2)根据函数图象可知,当y1>y2时,x的取值范围是
 

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=k1x+2与反比例函数y2=
k2
x
的图象交于点A(4,m)和B(-8,-2),与y轴交于点C
(1)m=
4
4
,k1=
1
2
1
2
,k2=
16
16

(2)根据函数图象可知,当y1>y2时,x的取值范围是
-8<x<0或x>4
-8<x<0或x>4

(3)过点A作AD⊥x轴于点D,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,函数y1=k1+b与函数y2=
k2x
的图象(x>0)交于A、B两点,与y轴交于点C,已知点A的坐标为(2,1),点C的坐标为(0,3)
(1)求函数y1、y2的表达式及点B的坐标;
(2)观察图象比较当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,函数y1=k1+b与函数y2=数学公式的图象(x>0)交于A、B两点,与y轴交于点C,已知点A的坐标为(2,1),点C的坐标为(0,3)
(1)求函数y1、y2的表达式及点B的坐标;
(2)观察图象比较当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江省杭州市萧山区高桥初中九年级(上)第二次月考数学试卷(解析版) 题型:解答题

如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A(4,m)和B(-8,-2),与y轴交于点C
(1)m=______,k1=______,k2=______;
(2)根据函数图象可知,当y1>y2时,x的取值范围是______;
(3)过点A作AD⊥x轴于点D,求△ABD的面积.

查看答案和解析>>

同步练习册答案