精英家教网 > 初中数学 > 题目详情

【题目】如图,OAOB是⊙O的半径,OB2OAOBPOA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的切线交OA延长线于点R

1)求证:RPRQ

2)若OPPQ,求PQ的长.

【答案】(1)证明见解析(2)

【解析】

1)连接OQQR为圆O的切线得到∠OQR90°,即∠OQB+∠PQR=90°,OAOB垂直根据垂直的定义得到∠BOA=90°,所以∠B+∠BPO=90°,再根据对顶角相等及等角的余角相等得到∠RPQ=RQP根据等角对等边得证

2)根据OP=PQ等边对等角得到∠POQ=PQO又根据半径OB=OQ再根据等边对等角得到∠B=BQO在三角形OBQ由∠BOA为直角设出∠B=PQO=POQ=x根据三角形的内角和定理列出关于x的方程求出方程的解得到x的值即为∠B的度数又∠RPQ=BPO=60°,PR=QR所以三角形PRQ为等边三角形所以PQ=QR在直角三角形OQR根据30°的正切函数定义OQ=OB=2即可求出QR的值从而得到PQ的长.

1)连接OQ.∵QR是切线∴∠OQR=90°,∴∠BQO+∠PQR=90°.

OAOB∴∠BOA=90°,∴∠B+∠BPO=90°,又∠BPO=RPQ∴∠B+∠RPQ=90°.

OB=OQB=BQO∴∠RPQ=RQPPR=QR

2OP=PQ∴∠POQ=PQO

OB=OQ∴∠B=PQO

设∠B=PQO=POQ=x又∠BOP=90°,

根据三角形内角和定理得

B+∠BOP+∠POQ+∠PQO=180°,x+90°+x+x=180°,

解得x=30°,即∠B=30°,∴∠RPQ=BPO=60°,PR=QR∴△PQR为等边三角形PQ=QR=PR

在直角三角形OQROQ=OB=2

根据锐角三角函数定义得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.

1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?

2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?

3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC沿角平分线BD所在直线翻折,顶点A恰好落在边BC的中点E处,AE=BD,那么tanABD=(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,反比例函数y=x0)的图象经过矩形OABC的对角线AC的中点M,分别与ABBC交于点DE,若BD=3OA=4,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,若OBC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

(1)如图①,在ABC中,∠A=120°,AB=AC=5,则ABC的外接圆半径R的值为

问题探究

(2)如图②O的半径为13,弦AB=24,MAB的中点,P是⊙O上一动点,求PM的最大值.

问题解决

(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在线段ABAC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EFFP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).

图① 图② 图③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°

1)求证:ABBD

2)求证铁塔AB的高度.(结果精确到0.1米,其中1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,BO、CO是角平分线.

(1)∠ABC=50°,∠ACB=60°,求BOC的度数,并说明理由.

(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“A=70°”,求BOC的度数.

(3)若A=n°,求BOC的度数.

查看答案和解析>>

同步练习册答案