精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-
5
4
x2+
17
4
x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.
(1)∵当x=0时,y=1,
∴A(0,1),
当x=3时,y=-
5
4
×32+
17
4
×3+1=2.5,
∴B(3,2.5),
设直线AB的解析式为y=kx+b,
则:
b=1
3k+b=2.5

解得:
b=1
k=
1
2

∴直线AB的解析式为y=
1
2
x+1;

(2)根据题意得:s=MN=NP-MP=-
5
4
t2+
17
4
t+1-(
1
2
t+1)=-
5
4
t2+
15
4
t(0≤t≤3);

(3)若四边形BCMN为平行四边形,则有MN=BC,此时,有-
5
4
t2+
15
4
t=
5
2

解得t1=1,t2=2,
∴当t=1或2时,四边形BCMN为平行四边形.
①当t=1时,MP=
3
2
,NP=4,故MN=NP-MP=
5
2

又在Rt△MPC中,MC=
MP2+PC2
=
5
2
,故MN=MC,此时四边形BCMN为菱形,
②当t=2时,MP=2,NP=
9
2
,故MN=NP-MP=
5
2

又在Rt△MPC中,MC=
MP2+PC2
=
5
,故MN≠MC,此时四边形BCMN不是菱形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,将一块腰长为
5
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.
(1)求点A、点B的坐标;
(2)求抛物线的解析式;
(3)设(2)中抛物线的顶点为D,求△DBC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②
BF
AF
=
BG
AG
,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为C,与y轴交于点D,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

用长6米的铝合金条制成如图所示的矩形窗框,则这个窗户的最大透光面积为______米2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-
3
交x轴于A(-3,0)、B(1,0)两点,交y轴于点C,点D在抛物线上,且CDAB,对称轴直线l交x轴于点M,连结CM,将∠CMB绕点M旋转,旋转后的两边分别交直线BC、直线CD于点E、F.
(1)求抛物线的解析式;
(2)当点E为BC中点时,射线MF与抛物线的交点坐标是______;
(3)若ME=
13
CF,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y=
1
6
x2-
1
6
(b+1)x+
b
6
(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.若在第一象限内存在点P,使得四边形PCOB的面积等于7
2
b
,且△PBC是以点P为直角顶点的等腰直角三角形.求:
(1)点A的坐标为______.
(2)求符合要求的点P坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在综合实践课上,小明要用如图所示的矩形硬纸板做一个装垃圾的无盖纸盒.已知这张矩形硬纸板ABCD边AB的长是40cm,边AD的长是20cm,裁去角上四个小正方形之后,就可以折成一个无盖纸盒.设这个无盖纸盒的底面矩形EFMN的面积是y(单位:cm2),纸盒的高是x(单位:cm).
(1)求出y与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据老师要求,小明做的无盖纸盒的高x不能超过宽EF且纸盒的底面矩形EFMN的面积y等于300cm2,求纸盒高的最大整数值x是多少cm?

查看答案和解析>>

同步练习册答案