精英家教网 > 初中数学 > 题目详情
如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②
BF
AF
=
BG
AG
,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.
(1)由Rt△AOB≌Rt△CDA,得OD=2+1=3,CD=1
∴C点坐标为(-3,1),
∴抛物线经过点C,
∴1=a(-3)2+a(-3)-2,
∴a=
1
2

∴抛物线的解析式为y=
1
2
x2+
1
2
x-2

(2)在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ是正方形.
以AB为边在AB的右侧作正方形ABPQ,过P作PE⊥OB于E,QG⊥x轴于G,可证△PBE≌△AQG≌△BAO,
∴PE=AG=BO=2,BE=QG=AO=1,
∴P点坐标为(2,1),Q点坐标为(1,-1).
由(1)抛物线y=
1
2
x2+
1
2
x-2
当x=2时,y=1;当x=1时,y=-1.
∴P、Q在抛物线上.
故在抛物线(对称轴的右侧)上存在点P(2,1)、Q(1,-1),使四边形ABPQ是正方形.

(2)另在抛物线(对称轴右侧)上存在点P、Q,使四边形ABPQ是正方形.
延长CA交抛物线于Q,过B作BPCA交抛物线于P,连PQ,设直线CA、BP的解析式分别为y=k1x+b1;y=k2x+b2
∵A(-1,0),C(-3,1),
∴CA的解析式为y=-
1
2
x-
1
2

同理得BP的解析式y=-
1
2
x+2,
解方程组
y=-
1
2
x-
1
2
y=
1
2
x2+
1
2
x-2

得Q点坐标为(1,-1),
同理得P点坐标为(2,1)
由勾股定理得AQ=BP=AB=
5
,而∠BAQ=90°,四边形ABPQ是正方形,
故在抛物线(对称轴右侧)上存在点P(2,1)、Q(1,-1),使四边形ABPQ是正方形.
(3)结论②
BF
AF
=
BG
AG
成立,
证明如下:连EF,过F作FMBG交AB的延长线于M,则△AMF△ABG,
MF
AF
=
BG
AG

由(1)知△ABC是等腰直角三角形,
∴∠1=∠2=45°
∵AF=AE
∴∠AEF=∠1=45°,
∴∠EAF=90°,
∴EF是⊙O的直径.
∴∠EBF=90°,
∵FMBG,
∴∠MFB=∠EBF=90°,∠M=∠2=45°,
∴BF=MF,
BF
AF
=
BG
AG
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的
8
15
?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
5
4
x2+
17
4
x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC是边长为4的等边三角形,AB在x轴上,点C在第一象限,AC交y轴于点D,点A的坐标为(-1,0).
(1)求B、C、D三点的坐标;
(2)抛物线y=ax2+bx+c经过B、C、D三点,求它的解析式;
(3)过点D作DEAB交经过B、C、D三点的抛物线于点E,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象与x轴交于点A(1,0)和点B(点B在点A右侧),与y轴交于点C(0,2).
(1)请说明a、b、c的乘积是正数还是负数;
(2)若∠OCA=∠CBO,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在学校田径运动会上,九年级的一名高个子男生抛实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男生的抛球处A点坐标为(0,2),实心球在空中线路的最高点B点的坐标是(6,5).
(1)求这个二次函数解析式;
(2)若抛出13.5米或大于13.5米远为“好成绩”,问该男生在这次抛掷中,能取得“好成绩”吗?试通过计算说明.(
15
≈3.873)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.

(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;
(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;
(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度.他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直地接触地面和门的内壁,并测得AC=1m.小强画出了如图的草图,请你帮他算一算门的高度OE(精确到0.1m).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分.则水喷出的最大高度是______米.

查看答案和解析>>

同步练习册答案