精英家教网 > 初中数学 > 题目详情
如图,抛物线经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式及点C的坐标;
(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;
(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?
(1)。C(6,0)。
(2)OE=2。
(3)存在满足条件的t.理由见解析
(4)当t=时,S取得最大值,最大值为1。

试题分析:(1)利用待定系数法求出抛物线的解析式,令y=0解方程,求出点C的坐标。
(2)如答图1,由△CEF∽△COA,根据比例式列方程求出OE的长度。
(3)如答图2,若△DMN是等腰三角形,可能有三种情形,需要分类讨论。
(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3,由S=S正方形DEFG﹣S梯形MEDN﹣SFJK求出S关于t的表达式,然后由二次函数的性质求出其最值。
解:(1)∵抛物线经过点A(0,3),B(2,3),
,解得:
∴抛物线的解析式为:
令y=0,即,解得x=6或x=﹣4。
∵点C位于x轴正半轴上,∴C(6,0)。
(2)当正方形的顶点F恰好落在线段AC上时,如答图所示:

设OE=x,则EF=x,CE=OC﹣OE=6﹣x.
∵EF∥OA,∴△CEF∽△COA。
,即
解得x=2.∴OE=2。
(3)存在满足条件的t.理由如下:
如答图,

易证△CEM∽△COA,
,即,得
过点M作MH⊥DN于点H,
则DH=ME=,MH=DE=2。
易证△MNH∽△COA,∴,即,得NH=1。
∴DN=DH+HN=
在Rt△MNH中,MH=2,NH=1,由勾股定理得:MN=
当△DMN是等腰三角形时:
①若DN=MN,则=,解得t=
②若DM=MN,则DM2=MN2,即22+(2=(2,解得t=2或t=6(不合题意,舍去)。
③若DM=DN,则DM2=DN2,即22+(2=(2,解得t=1。
综上所述,当t=1、2或时,△DMN是等腰三角形。
(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图,

设EF、DG分别与AC交于点M、N,
由(3)可知:ME=,DN=
设直线BC的解析式为y=kx+b,
将点B(2,3)、C(6,0)代入得:
,解得
∴直线BC的解析式为
设直线BC与EF交于点K,
∵xK=t+2,∴

设直线BC与GF交于点J,
∵yJ=2,∴2= ,得
∴FJ=xF﹣xJ=t+2﹣=t﹣
∴S=S正方形DEFG﹣S梯形MEDN﹣SFJK=DE2(ME+DN)•DE﹣FK•FJ
=22 [(2﹣t)+(3﹣t)]×2﹣t﹣1)(t﹣
过点G作GH⊥y轴于点H,交AC于点I,则HI=2,HJ=
∴t的取值范围是:2<t<
∴S与t的函数关系式为:S(2<t<)。
S
<0,且2<,∴当t=时,S取得最大值,最大值为1。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.

(1)甲运动4s后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,二次函数(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.

(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点(2,2)
(1)求a和k的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知函数是常数)
(1)若该函数的图像与轴只有一个交点,求的值;
(2)若点在某反比例函数的图像上,要使该反比例函数和二次函数都是的增大而增大,求应满足的条件以及的取值范围;
(3)设抛物线轴交于两点,且,在轴上,是否存在点P,使△ABP是直角三角形?若存在,求出点P及△ABP的面积;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2

(1)求S与x的函数关系式;
(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=
   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是
A.a<0
B.b2﹣4ac<0
C.当﹣1<x<3时,y>0
D.

查看答案和解析>>

同步练习册答案