精英家教网 > 初中数学 > 题目详情

【题目】某水果店以4/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.

1)该水果店两次分别购买了多少元的水果?

2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有4% 的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?

【答案】(1)水果店第一次购进水果800元,第二次购进水果1200元;(2)水果每千克售价为10

【解析】

1)设该水果店两次分别购买了x元和y元的水果.根据购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,两次购进水果共花去了2000列出方程组并解答;

2)设该水果每千克售价为m元,,则由售完这些水果获利不低于3780列出不等式并解答.

1)设水果店第一次购进水果x元,第二次购进水果y

由题意,得

解之,得

故水果店第一次购进水果800元,第二次购进水果1200.

2)设该水果每千克售价为m元,第一次购进水果 千克,第二次购进水果 千克,由题意

解之,得

故该水果每千克售价为10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.

(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是

(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形A`B`C`是由三角形ABC经过某种平移得到的,点A与点A`,点B与点B`,点C与点C`分别对应,观察点与点坐标之间的关系,解答下列问题:

分别写出点A、点B、点C、点A`、点B`、点C`的坐标,并说明三角形A`B`C`是由三角形ABC经过怎样的平移得到的.

若点是点通过中的平移变换得到的,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac02ab04a-2bc=0abc=-123.其中正确的是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究并解决问题:

探究

倍延三角形的一条中线,我们可以发现一些有用的结论.

已知,如图①所示,ADABC的中线,延长ADE,使AD=DE,连接BECE.

1)求证:ABCE.

2)请再写出两条不同类型的结论.

解决问题

如图所示②,分别以ABC的边ABAC为边,向三角形的外侧作两个等腰直角三角形,AB=AD,AC=AE,BAD = CAE=90°,点MBC的中点,连接DE,AM,试问线段AMDE之间存在什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.

(1)若∠CBD=39°,求∠BAD的度数;

(2)求证:∠1=∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《函数的图象与性质》拓展学习片段展示:

【问题】

如图①,在平面直角坐标系中,抛物线y=a(x-2)2-4经过原点O,与x轴的另一个交点为A,则a= ,点A的坐标为

【操作】

将图①中的抛物线在x轴下方的部分沿x轴翻折到x轴上方,如图②.直接写出翻折后的这部分抛物线对应的函数解析式:

【探究】

在图②中,翻折后的这部分图象与原抛物线剩余部分的图象组成了一个“W”形状的新图象,则新图象对应的函数yx的增大而增大时,x的取值范围是

【应用】结合上面的操作与探究,继续思考:

如图③,若抛物线y=(x-h)2-4x轴交于AB两点(AB左),将抛物线在x轴下方的部分沿x轴翻折,同样,也得到了一个“W”形状的新图象

1)求AB两点的坐标;(用含h的式子表示)

2)当1x2时,若新图象的函数值yx的增大而增大,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,

(1)求证:△ACE≌△BCD;

(2)若DE=13,BD=12,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人.

1)求第一轮后患病的人数;(用含x的代数式表示)

2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.

查看答案和解析>>

同步练习册答案