精英家教网 > 初中数学 > 题目详情
精英家教网如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为(  )
A、
15
8
B、
15
4
C、
15
2
D、15
分析:连接AF,根据折叠的性质,得EF垂直平分AC,则AF=CF.设AF=x,则BF=4-x,根据勾股定理求得x的值,再根据勾股定理求得AC的长,即可求得AO的长,再根据勾股定理求得OF的长,进而求得EF=2OF.
解答:精英家教网解:连接AF.
根据折叠的性质,得EF垂直平分AC,则AF=CF.设AF=x,则BF=4-x.
在直角三角形ABF中,根据勾股定理,得x2=9+(4-x)2
解得x=
25
8

在直角三角形ABC中,根据勾股定理,得AC=5,则AO=2.5.
在直角三角形AOF中,根据勾股定理,得OF=
15
8

根据全等三角形的性质,可以证明OE=OF,则EF=
15
4

故选B.
点评:此题综合运用了折叠的性质、矩形的性质、全等三角形的判定及性质以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在长方形ABCD(对边相等,四角都是直角)中,将△ABC沿AC对折至△AEC位置,CE与AD交精英家教网于点F.
(1)求证:△AFC是等腰三角形;
(2)若∠ACB=30°,BC=12cm,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上.
(1)若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C有
7
7
个.
(2)选取其中一个C点连△ABC,作出△ABC关于直线L对称的图形.

查看答案和解析>>

科目:初中数学 来源:2015届江苏省苏州市八年级上学期期中模拟数学试卷(解析版) 题型:解答题

(8分)如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.

(1)试说明:AF=FC;

(2)如果AB=3,BC=4,求AF的长.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北师大版九年级(上)期末数学复习水平测试卷(解析版) 题型:解答题

如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

同步练习册答案