精英家教网 > 初中数学 > 题目详情

【题目】如图,在 Rt△ABC 中,∠ABC=90°AB=BC=,将△ABC 绕点 C 逆时针旋转 60°,得到△MNC, 连接 BM,则 BM 的长是

【答案】

【解析】试题分析:首先考虑到BE所在的三角形并不是特殊三角形,所以猜想到要求BE,可能需要构造直角三角形.由旋转的性质可知,AC=AE∠CAE=60°,故△ACE是等边三角形,可证明△ABE△CBE全等,可得到∠ABE=45°∠AEB=30°,再证△AFB△AFE是直角三角形,然后在根据勾股定理求解

解:连结CE,设BEAC相交于点F,如下图所示,

∵Rt△ABC中,AB=BC∠ABC=90°

∴∠BCA=∠BAC=45°

∵Rt△ABC绕点A逆时针旋转60°Rt△ADE重合,

∴∠BAC=∠DAE=45°AC=AE

旋转角为60°

∴∠BAD=∠CAE=60°

∴△ACE是等边三角形

∴AC=CE=AE=4

△ABE△CBE中,

∴△ABE≌△CBE SSS

∴∠ABE=∠CBE=45°∠CEB=∠AEB=30°

△ABF中,∠BFA=180°﹣45°﹣45°=90°

∴∠AFB=∠AFE=90°

Rt△ABF中,由勾股定理得,

BF=AF==2

又在Rt△AFE中,∠AEF=30°∠AFE=90°

FE=AF=2

∴BE=BF+FE=2+2

故,本题的答案是:2+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列运算中,正确的是(  )

A. (﹣3)2=﹣9 B. ﹣(+3)=3

C. 2(3x+2)=6x+2 D. 3a﹣2aa

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列式子不正确的是(  

A. a3+a2a5 B. a2a3a5 C. a32a6 D. a3÷a2a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教材中有如下一段文字:
思考
如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?
如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.
小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法 . (填“正确”或“不正确”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:
老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:

考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年“五一”假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山巅C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°,点C到水平线AM的距离为600米.

(1)求B点到水平线AM的距离.

(2)求斜坡AB的坡度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解

(1)2x3﹣8x

(2)x2﹣2x﹣3

(3)4a2+4ab+b2﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ab互为倒数,cd互为相反数,则(ab4﹣3(c+d3_____

查看答案和解析>>

同步练习册答案