精英家教网 > 初中数学 > 题目详情

【题目】某校为更好地开展传统文化进校园活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.

最喜爱的传统文化项目类型频数分布表

根据以上信息完成下列问题:

(1)直接写出频数分布表中a的值;

(2)补全频数分布直方图;

(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?

【答案】(10.36;(2)图见解析;(3428.

【解析】试题分析: (1)首先根据围棋类是14人,频率是0.28,据此即可求得总人数,然后利用18除以总人数即可求得a的值;用50乘以0.20求出b的值,即可解答;

(2)根据b的值,画出直方图即可;

(4)用总人数1500乘以喜爱围棋的学生频率即可求解;

试题解析:

(1)14÷0.28=50(人),

a=18÷50=0.36.

b=50×0.20=10,

故答案为0.36,10.

(2)频数分布直方图,如图所示,

(3)1500×0.28=420(人),

答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有420人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.

(1)求两种型号的地砖的单价各是多少元/块?

(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线AC 、BD相交于点O,延长AB至点E,使BE=AB,连接CE

(1)求证:四边形BECD是平行四边形;

(2)若∠E=60°,AC=,求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt,使∠BAQ=90°,,点C在点Q右侧,CQ=1厘米,过点C作直线ml,过的外接圆圆心OODm于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DEDF为邻边作矩形DEGF.设运动时间为t秒.

(1)直接用含t的代数式表示BQDF

(2)0t1时,求矩形DEGF的最大面积;

(3)Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年是改革开放四十周年,我国国内生产总值由改革开放前的3679亿元增至82.7万亿元数据82.7万亿用科学记数法表示为(

A.8.27×105B.8.27×1013C.8.27×1012D.0827×1014

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,是轴对称图形但不是中心对称图形的是(
A.等边三角形
B.正六边形
C.正方形
D.圆

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P,Q分别是双曲线在第一、三象限上的点,PA⊥轴,QB⊥轴,垂足分别为A,B,点C是PQ与轴的交点.设△PAB的面积为,△QAB的面积为,△QAC的面积为,则有( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:

(1)AM⊥DM;
(2)M为BC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)下面的图形是由边长为l的正方形按照某种规律排列而组成的.

(1)观察图形,填写下表:

图形

正方形的个数

8

   

   

图形的周长

18

   

   

(2)推测第n个图形中,正方形的个数为   ,周长为   (都用含n的代数式表示).

(3)这些图形中,任意一个图形的周长y与它所含正方形个数x之间的关系可表示为y=   

查看答案和解析>>

同步练习册答案