精英家教网 > 初中数学 > 题目详情

阅读下面学习材料:

已知多项式有一个因式是,求m的值。

解法一:设=

=

比较系数得:,解得,所以m=0.5

解法二:设=A(A为整式)。由于上式为恒等式,为了方便计算,取x=-0.5,得 解得m=0.5

根据上面学习材料,解答下面问题:

已知多项式有因式,试用两种方法求m、n的值。

解法1:                                      

解法2:

解法1:设=,     ……1分

= ……2分

比较系数得:,解得,所以……4分

解法2:设=A(A为整式)。      ……5分

,得          ①                      ……6分

,得      ②                      ……7分

由①、②解得。                                 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面学习材料:
已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得:
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=0.5
m=0.5
,所以m=0.5
解法二:设2x3-x2+m=A(2x+1)(A为整式).由于上式为恒等式,为了方便计算,取x=-0.5,
得2×(-0.5)3-0.52+m=0,解得m=0.5
根据上面学习材料,解答下面问题:
已知多项式x4+mx3+nx-16有因式x-1和x-2,试用两种方法求m、n的值.
解法1:
解法2:

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:
小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2-6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.
他的解答过程如下:
∵二次函数y=x2-6x+7的对称轴为直线x=3,
∴由对称性可知,x=1和x=5时的函数值相等.
∴若1≤m<5,则x=1时,y的最大值为2;
若m≥5,则x=m时,y的最大值为m2-6m+7.
请你参考小明的思路,解答下列问题:
(1)当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为
49
49

(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;
(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为
1或-5
1或-5

查看答案和解析>>

科目:初中数学 来源:2013届北京市西城区(北区)九年级上学期期末考试数学试卷(带解析) 题型:解答题

阅读下面的材料:
小明在学习中遇到这样一个问题:若1≤xm,求二次函数的最大值.他画图研究后发现,时的函数值相等,于是他认为需要对进行分类讨论.
他的解答过程如下:
∵二次函数的对称轴为直线
∴由对称性可知,时的函数值相等.
∴若1≤m<5,则时,的最大值为2;
m≥5,则时,的最大值为

请你参考小明的思路,解答下列问题:
(1)当x≤4时,二次函数的最大值为_______;
(2)若px≤2,求二次函数的最大值;
(3)若txt+2时,二次函数的最大值为31,则的值为_______.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年北京市西城区(北区)九年级上学期期末考试数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在学习中遇到这样一个问题:若1≤xm,求二次函数的最大值.他画图研究后发现,时的函数值相等,于是他认为需要对进行分类讨论.

他的解答过程如下:

∵二次函数的对称轴为直线

∴由对称性可知,时的函数值相等.

∴若1≤m<5,则时,的最大值为2;

m≥5,则时,的最大值为

请你参考小明的思路,解答下列问题:

(1)当x≤4时,二次函数的最大值为_______;

(2)若px≤2,求二次函数的最大值;

(3)若txt+2时,二次函数的最大值为31,则的值为_______.

 

查看答案和解析>>

同步练习册答案