精英家教网 > 初中数学 > 题目详情
已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CDBF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.
(1)证明:∵直径AB平分
CD

∴AB⊥CD.
∵BF与⊙O相切,AB是⊙O的直径,
∴AB⊥BF.
∴CDBF.

(2)连接BD,BC.
∵AB是⊙O的直径,
∴∠ADB=90°.
在Rt△ADB中,
∵cos∠BAF=cos∠BCD=
3
4
,AB=4×2=8.
∴AD=AB•cos∠BAF=8×
3
4
=6.
∵AB⊥CD于E,
在Rt△AED中,cos∠BAF=cos∠BCD=
3
4
,sin∠BAF=
7
4

∴DE=AD•sin∠BAF=6×
7
4
=
3
2
7

∵直径AB平分
CD

∴CD=2DE=3
7

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,直线y=
3
3
x+
3
与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为(  )
A.3B.6C.
3
3
2
D.3
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)请判断CD是否⊙O的切线?并说明理由;
(2)若⊙O的半径为6,求弧AC的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若过点D作DGBE交EF于点G,过G作GHDE交DF于点H,则易知△DGH是等边三角形.设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3,试探究S1、S2、S3之间的等量关系,请直接写出其结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

菱形的对角线交点为O,以O为圆心,O到菱形一边的距离为半径的圆与另三边的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.
求证:AC平分∠DAB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图已知△ABC的一边BC与以AC为直径的⊙O相切于点C,若BC=4,AB=5,则sinB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=
3
5
,AD=12.
(1)求证:△ANM≌△ENM;
(2)求证:FB是⊙O的切线;
(3)证明四边形AMEN是菱形,并求该菱形的面积S.

查看答案和解析>>

同步练习册答案