精英家教网 > 初中数学 > 题目详情
23、已知:如图1,点C为线段AB上一点,△ACM和△CBN都是等边三角形,AN、BM交于点P,由△BCM≌△NCA,易证结论:①BM=AN.

(1)请写出除①外的两个结论:
∠MBC=∠ANC
∠BMC=∠NAC

(2)求出图1中AN和BM相交所得最大角的度数
120°

(3)将△ACM绕C点按顺时针方向旋转180°,使A点落在BC上,请对照原题图形在图2中画出符合要求的图形(不写作法,保留痕迹);
(4)探究图2中AN和BM相交所得的最大角的度数有无变化
不变
(填变化或不变);
(5)在(3)所得到的图形2中,请探究“AN=BM”这一结论是否成立,若成立,请证明;若不成立,请说明理由.
分析:(1)可根据全等三角形的对应角相等和对应边相等来得出结论;
(2)本题求的是∠APB的度数,∠APB是三角形BNP的外角,因此利用三角形外角的特点得出结论;
(4)要通过证△BMC≌△ACN来实现,根据已知条件来证明这两个三角形两三角形全等,然后根据(2)的步骤即可得出最大角仍是120°;
(5)通过证三角形ANC和BCM全等来得出AN=BM,方法同(4).
解答:解:(1)∠MBC=∠ANC、∠BMC=∠NAC.

(2)∵∠CNP=∠CBP,
∵∠APB=∠BNC+∠CNP+∠NBP=∠BNC+∠NBP+∠ABP=∠NBC+∠BNC=120°;

(3)

(4)不变;

(5)成立.
证明:∵三角形NBC和AMC都是等边三角形,
∴BC=CN,MC=AC,∠MCB=∠NCA=60°;
∴△CAN≌△MCB;
∴AN=BM.
点评:本主要考查等边三角形的性质和全等三角形的判定,根据全等三角形来得出相等的边和角是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,求证:AN=BM,这时可以证明
 
 
,得到AN=BM;
(2)如果去掉“点C为线段AB上一点”的条件,而是让△CBN绕点C精英家教网旋转成图2的情形,还有“AN=BM”的结论吗?如果有,请给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)已知:如图1,点O为正方形ABCD内任一点,连接AO、BO,分别以AO、BO为一边作如图所示正方形BOMN和正方形AOFE,连接CN
(1)AE、CN之间有怎样的关系?请验证;
(2)若点O是正方形ABCD外部一点,如图2,其他条件不变(1)的结论是否成立?请验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)已知:如图,A点坐标为(-
32
,0)
,B点坐标为(0,3).
(1)求过A,B两点的直线解析式;
(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.

查看答案和解析>>

同步练习册答案