精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.当线段AM最短时,重叠部分的面积是________.


分析:先根据相似三角形的判定定理得出△ABE∽△ECM,设BE=x,根据相似三角形的对应边成比例,易得CM的表达式继而求得AM的值,利用二次函数的性质,即可求得线段AM的最小值,继而求得重叠部分的面积.
解答:∵AB=AC,
∴∠B=∠C,
∵△ABC≌△DEF,
∴∠AEF=∠B,
又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
∴∠CEM=∠BAE,
∴△ABE∽△ECM,
设BE=x,
=,即=
∴CM=-+x=-(x-3)2+
∴AM=5-CM=(x-3)2+
∴当x=3时,AM最短为
又∵当BE=x=3=BC,
∴点E为BC的中点,
∴AE⊥BC,
∴AE===4,此时EF⊥AC,
∴EM===
∴S△AEM=AM•EM=××=
故答案为:
点评:本题考查的是相似三角形的判定与性质及二次函数的最值问题,在解答此题时要注意数形结合思想与函数思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案