精英家教网 > 初中数学 > 题目详情
2.一个反比例函数的图象位于第二、四象限.请你写出一个符合条件的解析式是y=-$\frac{1}{x}$,答案不唯一.

分析 位于二、四象限的反比例函数比例系数k<0,据此写出一个函数解析式即可.

解答 解:∵反比例函数位于二、四象限,
∴k<0,
解析式为:y=-$\frac{1}{x}$.
故答案为y=-$\frac{1}{x}$,答案不唯一.

点评 本题考查了反比例函数的性质,要知道,对于反比例函数y=$\frac{k}{x}$(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.小军在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案.(要求:不写作法,保留作图痕迹,写出结论.)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.方程$\sqrt{2+x}=x$的解是x=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,等腰△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,AD∥BC,连接CD,则∠ADC的度数为(  )
A.50°B.60°C.70°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,平面直角坐标系中,抛物线y=-$\frac{1}{3}$(x+h)2+k的对称轴为x=-1,与y轴交于点D(0,$\frac{13}{3}$).
(1)求h和k的值;
(2)点P为第二象限对称轴左侧抛物线上一点,过P作x轴垂线,垂足为B,点B关于抛物线对称轴的对称点为A,在对称轴上取点C,使∠BPC>90°,连接AC,若∠BAC=$\frac{1}{2}$∠BPC.求证:PB=PC;
(3)在(2)条件下,过点A作AE∥PC交抛物线的对称轴于点E,当CE:AE=13:5时,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列命题中正确的个数是(  )
①垂直于弦的直径平分线以及弦所对的两条弧.②平分弦的直径垂直于这条弦,并且平分这条弦所对的两条弧.③弦的垂直平分线经过圆心,并且平分这条弦所对的两条弦.④平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.利用数轴求不等式组$\left\{\begin{array}{l}{x-1≤0}\\{x>-3}\end{array}\right.$的解集表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:
y=$\left\{\begin{array}{l}{54x}&{(0≤x≤5)}\\{30x+120}&{(5<x≤15)}\end{array}\right.$.
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)
(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AD是△ABC的中线,tanB=$\frac{1}{3}$,cosC=$\frac{\sqrt{2}}{2}$,AC=$\sqrt{2}$.求:
(1)BC的长;
(2)sin∠ADC的值.

查看答案和解析>>

同步练习册答案