精英家教网 > 初中数学 > 题目详情
4.在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是(  )
A.24B.48C.54D.108

分析 设AC=3x,则BC=4x,然后根据勾股定理得到AC2+BC2=AB2,求出x2的值,继而根据三角形的面积公式求出答案.

解答 解:设AC=3x,则BC=4x,
根据勾股定理有AC2+BC2=AB2
即(3x)2+(4x)2=152,得:x2=9,
则△ABC的面积=$\frac{1}{2}$×3x×4x=6x2=54.
故选:C.

点评 本题考查勾股定理的知识,难度适中,关键是根据勾股定理公式求出x2的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.广安某网站调查,2016年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据以上信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若广安市约有900万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:如图,平面直角坐标系中,点B坐标为(-4,0),点A为线段OB中点,点P在第三象限,且AP⊥y轴,PF⊥y轴,D为BP中点,连接DA并延长交y轴于点C,FE⊥DC.
(1)直接写出点A坐标(-2,0);
(2)求证:BP=AC;
(3)若点E为AC中点,连接PE,判断△PEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.一次函数y=5x+3的图象是经过点(0,3)和(1,8)的一条直线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB交AB于点E,AB=4$\sqrt{2}$cm,求△BDE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知直线L:y=-$\frac{1}{2}$x+2与x轴、y轴交于A、B两点,在y轴上有一个点C(0,4),动点M从A点出发,以每秒1个单位的速度沿x轴向左移动.
(1)求A、B两点的坐标.
(2)求△COM的面积S与点M移动的时间t之间的函数关系式.
(3)当t=6时,
①求直线CM所对应的解析式.
②问直线CM与直线L有怎样的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.对于函数y=-$\frac{3}{x}$,当x<0时,函数图象位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列运算中错误的是(  )
A.$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$B.$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$C.2 $\sqrt{2}$+3$\sqrt{2}$=5$\sqrt{2}$D.$\sqrt{(\sqrt{2}-\sqrt{3})^{2}}$=$\sqrt{2}-\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.观察下表,按你发现的规律填空
a0.01211.2112112100
$\sqrt{a}$0.111.111110
已知$\sqrt{15}$=3.873,则$\sqrt{150000}$的值为387.3.

查看答案和解析>>

同步练习册答案