精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3 , 现有如下结论:
①S1:S2=AC2:BC2
②连接AE,BD,则△BCD≌△ECA;
③若AC⊥BC,则S1S2= S32
其中结论正确的序号是

【答案】①②③
【解析】①S1:S2=AC2:BC2正确,
解:∵△ADC与△BCE是等边三角形,
∴△ADC∽△BCE,
∴S1:S2=AC2:BC2
②△BCD≌△ECA正确,
证明:∵△ADC与△BCE是等边三角形,
∴∠ACD=∠BCE=60°
∴∠ACD+∠ACB=∠BCE+∠ACD,
即∠ACE=∠DCB,
在△ACE与△DCB中,

∴△BCD≌△ECA(SAS).
③若AC⊥BC,则S1S2= S32正确,
解:设等边三角形ADC的边长=a,等边三角形BCE边长=b,则△ADC的高= a,△BCE的高= b,
∴S1= a a= a2 , S2= b b= b2
∴S1S2= a2 b2= a2b2
∵S3= ab,
∴S32= a2b2
∴S1S2= S32
【考点精析】关于本题考查的等边三角形的性质,需要了解等边三角形的三个角都相等并且每个角都是60°才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线l1经过点E(1,0)和F(5,0),并交y轴于D(0,﹣5);抛物线l2:y=ax2﹣(2a+2)x+3(a≠0),
(1)试求抛物线l1的函数解析式;
(2)求证:抛物线 l2与x轴一定有两个不同的交点;
(3)若a=1,抛物线l1、l2顶点分别为;当x的取值范围是时,抛物线l1、l2 上的点的纵坐标同时随横坐标增大而增大;
(4)若a=1,已知直线MN分别与x轴、l1、l2分别交于点P(m,0)、M、N,且MN∥y轴,当1≤m≤5时,求线段MN的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.

(1)求证:EF=DF﹣BE;

(2)若△ADF的周长为,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论:w

①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,则a≠b;

③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣

④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;

其中结论正确个数有( )

A.4个 B.3个 C.2个 D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,边长为10,A=60°,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去…则四边形A2B2C2D2的周长是 ;四边形A2015B2015C2015D2015的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD⊥AC,AB=6,AC=5 ,∠A=30°.
①求BD和AD的长;
②求tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:

(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.

(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.

(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

查看答案和解析>>

同步练习册答案