精英家教网 > 初中数学 > 题目详情
如图,将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分D精英家教网A,直线EF的表达式为y=kx-k(k<0))
(1)问:EF与抛物线y=-
1
8
x2
有几个公共点?
(2)当EF与抛物线只有一个公共点时,设A′(x,y),求
x
y
的值.
分析:(1)根据判别式与坐标轴交点个数性质,分别得出即可;
(2)首先得出EF与x轴、y轴的交点为M(1,0),E(0,
1
2
),进而得出RT△EMO∽RT△A′AD,即可求出.
解答:解:(1)由
y=kx-k
y=-
1
8
x2
,得x2+8kx-8k=0,
△=(8k)2+32k=32k(2k+1),
∵k<0.
k<-
1
2
时,△>0
,EF与抛物线有两个公共点,
k=-
1
2
,△=0
时,EF与抛物线有一个公共点,
k>-
1
2
,△<0
时,EF与抛物线没有公共点,

(2)EF与抛物线只有一个公共点时,k=-
1
2
,EF的表达式为y=-
1
2
x+
1
2

EF与x轴、y轴的交点为M(1,0),E(0,
1
2
),
∵∠EMO=90°-∠OEM=∠EAA′,
∴RT△EMO∽RT△A′AD(1分)
OE
OM
=
DA
DA
,((1分))即
1
2
1
=
x
2y

x
y
=1
(1分).
点评:此题主要考查了判别式与图象与x轴交点个数的规律以及三角形相似的判定方法,三角形相似经常与二次函数相结合同学们应有意识地运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕.
(1)求证:△FGC≌△EBC;
(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点c'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为
 

(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
精英家教网
(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松北区三模)如图,将矩形纸片ABCD折痕,使点D落在点线段AB的中点F处.若AB=4,则边BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)求证:△AEC是等腰三角形;
(2)若P为线段AC上一动点,作PG⊥AB′于G、PH⊥DC于H,求证:PG+PH=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察与发现:
(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?为什么?
精英家教网
实践与运用:
如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).
(2)在图②中连接BB′,判断△BCB′的形状,请说明理由;
(3)图⑥中的△GCC′是等边三角形吗?请说明理由.
精英家教网

查看答案和解析>>

同步练习册答案