精英家教网 > 初中数学 > 题目详情

如图,点E、F位于线段AC上,且AB=CD,AB∥CD,BE∥DF.试说明:△ABE与△CDF全等的理由.(请注明理由)

证明:∵AB∥CD,
∴∠A=∠C.
∵BE∥DF,
∴∠AEB=∠CFD.
在△ABE与△CDF中,

∴△ABE≌△CDF(AAS).
(理由叙述)
分析:根据平行线的性质可得两组角对应相等,运用AAS证明两个三角形全等.
点评:此题考查了平行线的性质和全等三角形的判定,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,点O是AC边上的一个动点,过点O作MN∥BC,交∠ACB的平分线于点E,交精英家教网∠ACB的外角平分线于点F.
(1)求证:OC=
12
EF;
(2)当点O位于AC边的什么位置时,四边形AECF是矩形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.
(1)分别求出点Q位于AB、BC上时,S与x之间函数关系式,并写出自变量x的取值范围;
(2)当线段PQ将梯形ABCD分成面积相等的两部分时,x的值是多少?
(3)在(2)的条件下,设线段PQ与梯形ABCD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图2说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么精英家教网条件时,其一定平分梯形的面积?(只要求说出条件,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),已知A、B位于直线MN的两侧,请在直线MN上找一点P,使PA+PB最小,并说明依据.
如图(2),动点O在直线MN上运动,连接AO,分别画∠AOM、∠AON的角平分线OC、OD,请问∠COD的度数是否发生变化?若不变,求出∠COD的度数;若变化,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(0,1),B(-4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B.
(1)求抛物线的解析式和点C的坐标;
(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;
(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PA精英家教网C的周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们规定:若点O是线段MN的中点,则称点M关于O的对称点是N(或称点M与点N关于O成中心对称);若直线n是线段MN的垂直平分线,则称点M关于n的对称点是N(或称点M与点N关于n成轴对称),如图现有石头A和石头B关于竹竿l对称,石头A和石头B相距80cm一只电子青蛙位于点P,与石头A相距60cm,与竹竿l相距30cm,他按照如下指令跳动:第一跳落点于P1,P与P1关于点A成中心对称;第二跳落点于P2,P2与P1关于竹竿l成轴对称;第三跳落点于P3,P3与P2关于点B成中心对称;第四跳落点于P4,P4与P3关于竹竿l成轴对称;以此跃下去,若每25跳可以休息一次.
(1)画出这只电子青蛙前四跳运动的路线图,并求点P4与点P1的距离(不须说明理由)
(2)求电子青蛙第三次休息点与点P的距离.

查看答案和解析>>

同步练习册答案