精英家教网 > 初中数学 > 题目详情
7.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE平分∠BAC的外角,DE∥AB交AE于点E.试说明四边形ADCE是矩形.

分析 首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.

解答 证明:如图所示:∵AB=AC,
∴∠B=∠ACB,
∵AE是∠BAC的外角平分线,
∴∠FAE=∠EAC,
∵∠B+∠ACB=∠FAE+∠EAC,
∴∠B=∠ACB=∠FAE=∠EAC,
∴AE∥CD,
又∵DE∥AB,
∴四边形AEDB是平行四边形,
∴AE平行且等于BD,
又∵AB=AC,AD⊥BC,
∴BD=CD,∠ADC=90°,
∴AE平行且等于CD,
∴四边形ADCE是平行四边形,
又∵∠ADC=90°,
∴平行四边形ADCE是矩形.
即四边形ADCE是矩形.

点评 此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.学校将学生的平时成绩、期中考试、期末考试三项成绩按2:3:5的比例计算学期总成绩.小明这学期的平时成绩为85分,期中考试成绩为80分,若想争取学期总成绩不低于90分,则期末考试的成绩不得低于98分.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在下列长度的各组线段中,能组成直角三角形的是(  )
A.5,6,7B.$\sqrt{2}$,$\sqrt{5}$,$\sqrt{7}$C.1,4,9D.5,11,12

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)若点A(-3,y1)、点B(-$\frac{1}{2}$,y2)、点C($\frac{7}{2}$,y3)在该函数图象上,则y1<y3<y2;(4)若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确结论的序号是①④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知$\frac{x}{y}$=$\frac{5}{3}$,求$\frac{x}{x+y}$+$\frac{x}{x-y}$+$\frac{{x}^{2}}{{x}^{2}+{y}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若|x-3|+(y+2)2=0,则xy的值为-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在一个不透明的袋子中装有仅有颜色不同的10个球,其中红球4个,白球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“再从袋子中随机摸出一个球是白球”记为事件A,请完成下表:
事件A 必然事件 随机事件
m的值42或3
(2)先从袋子中取出m个红球,再放入m个相同的白球并摇匀,随机摸出一个球是白球的概率等于$\frac{4}{5}$,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.二次函数y=x2+bx+c(b>0)的图象C与x轴有且仅有一个公共点M,C与y轴相交于点N,过点N的直线l:y=-x+m与C交与另一点A,l与x轴交于点B,若9S△AMN=7S△BMN,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算
(1)计算:(a2-6a-7)-3(a2-3a+4)
(2)先化简,再求值:5(a2b-3ab2)-2(a2b-7ab2),其中a=-1,b=1.

查看答案和解析>>

同步练习册答案