精英家教网 > 初中数学 > 题目详情
6.从三角形(不是等腰三角形)一个顶点引起一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且AD=CD,则∠ACB=96°.
(2)如图,在△ABC中,AC=2,BC=$\sqrt{2}$,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

分析 (1)根据相似三角形的性质得到∠BCD=∠A=48°,再根据角的和差关系求出∠ACB即可.
(2)设BD=x,利用△BCD∽△BAC,得$\frac{BC}{BA}$=$\frac{BD}{BC}$,列出方程即可解决问题.

解答 解:(1)当AD=CD时,如图3,∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=96°.
(2)由已知AC=AD=2,
∵△BCD∽△BAC,
∴$\frac{BC}{BA}$=$\frac{BD}{BC}$,设BD=x,
∴($\sqrt{2}$)2=x(x+2),
∵x>0,
∴x=$\sqrt{3}$-1,
∵△BCD∽△BAC,
∴$\frac{CD}{AC}$=$\frac{BD}{BC}$=$\frac{\sqrt{3}-1}{\sqrt{2}}$,
∴CD=$\frac{\sqrt{3}-1}{\sqrt{2}}$×2=$\sqrt{6}$-$\sqrt{2}$.
故答案为:96.

点评 本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.已知:y与x-3成正比例,且x=4时y=3.
(1)求y与x之间的函数关系式;
(2)当y=-12时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简,再求值:-2x2-$\frac{1}{2}$[4y2-2(x2-y2)+6],其中x=-1,y=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二次函数的顶点坐标为A(1,9),且其图象经过点(-1,5)
(1)求此二次函数的解析式;
(2)若该函数图象与x轴的交点为B、C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:-62÷2$\frac{1}{4}$×(-1$\frac{1}{2}$)2+|-4|-(-2)2×(-$\frac{1}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解一元一次方程:$\frac{3x-2}{4}$-$\frac{5x+2}{6}$=1-x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,过点F(6,5)的抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C.且B(5,0)
(1)求此抛物线的解析式;
(2)若抛物线的对称轴交x轴于点E,交CF于点G,连接OG、EF,试判断四边形OEFG的形状,并说明理由;
(3)在(2)的条件下,连接OF交对称轴于点D,抛物线对称轴上是否存在点P,使△OFP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
(1)a(a+b)-b(a-b)
(2)(x-2y)(2y+x)+(2y+x)2-2x(x+2y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知关于x的方程x2+ax-2=0.
(1)求证:不论a取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为2,求a的值及该方程的另一根.

查看答案和解析>>

同步练习册答案