精英家教网 > 初中数学 > 题目详情
17.若关于x的一元一次不等式组$\left\{\begin{array}{l}{x-a>0}\\{2x-2<1-x}\end{array}\right.$有解,则a的取值范围是(  )
A.a>1B.a≥1C.a<1D.a≤1

分析 先求出两个不等式的解集,再根据有解列出不等式组求解即可.

解答 解:$\left\{\begin{array}{l}{x-a>0①}\\{2x-2<1-x②}\end{array}\right.$
解不等式①得,x>a,
解不等式②得,x<1,
∵不等式组有解,
∴a<1,
故选C.

点评 本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.如图,在?ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,?ABCD的周长是14,则DM等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.南京长江隧道即将通车,这将大大改善市民过江难的问题.已知隧道洞长37900米,这个数用科学记数法可表示为(  )
A.3.79×103B.3.79×104C.3.79×105D.0.379×106

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列事件中,随机事件是(  )
A.从1,2,3,4,5这五个数中,任选两个数,所得两数的平方和是一个整数
B.从1,2,3,4,5这五个数中,任选两个数,所得两数的平方和是一个正整数的平方
C.从1,2,3,4,5这五个数中,任选两个数,所得两数的平方和是一个正整数的立方
D.从1,2,3,4,5这五个数中,任选两个数,所得两数的平方和是一个正整数的四次方

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,A是反比例函数y=$\frac{4}{x}$(x>0)图象上一点,以OA为斜边作等腰直角△ABO,将△ABO绕点O以逆时针旋转135°,得到△A1B1O,若反比例函数y=$\frac{k}{x}$的图象经过点B1,则k的值是-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到红球的概率是$\frac{5}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.小华和小军玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小华先从中抽出一张,小军从剩余的3张牌中再抽出一张.
(1)请用树状图或列表表示出两人抽牌可能出现的所有结果;
(2)求摸出两张牌面整体图形都是中心对称图形的纸牌的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.对于实数a、b,定义一种新运算“?”为:a?b=$\frac{2}{{a}^{2}+ab}$,这里等式右边是通常的四则运算.例如:1?3=$\frac{2}{{1}^{2}+1×3}$=$\frac{1}{2}$.
(1)解方程(-2)?x=1?x;
(2)若x,y均为自然数,且满足等式y-5=$\frac{1}{(-1)?x}$,求满足条件的所有数对(x,y).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$

回答下列问题:
(1)化简:$\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$=$\sqrt{n+1}-\sqrt{n}$;(n为正整数)
(2)利用上面所揭示的规律计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2008}+\sqrt{2009}}$+$\frac{1}{\sqrt{2009}+\sqrt{2010}}$.

查看答案和解析>>

同步练习册答案