精英家教网 > 初中数学 > 题目详情

一个扇形的周长是4,则这个扇形的面积最大值是________.

1
分析:由扇形的周长和面积公式都和半径和弧长有关,故可设出半径和弧长,表示出周长和面积公式,寻找关系即可.
解答:设半径为r,弧长为l,则周长为2r+l=4,面积为S=lr,
∵4=2r+l≥2(当且仅当r=l时取“=”),
∴rl≤2,
∴S=lr≤×2=1,
∴S的最大值是1.
故答案是:1.
点评:本题考查扇形的周长和面积公式及利用基本不等式求最值,考查运用所学知识解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,抛物线y=
1
4
x2-6
与直线y=
1
2
x
相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:
1
a2
+
1
b2
=
1
h2

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

一个扇形的周长为6m,则它的最大面积是
 
m2

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》中考题集(38):20.5 二次函数的一些应用(解析版) 题型:解答题

如图1,在平面直角坐标系中,抛物线与直线相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(38):23.5 二次函数的应用(解析版) 题型:解答题

如图1,在平面直角坐标系中,抛物线与直线相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:

查看答案和解析>>

同步练习册答案