精英家教网 > 初中数学 > 题目详情

某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.
(1)完成下表

 
甲(kg)
乙(kg)
件数(件)
A
 
5x
x
B
4(40-x)
 
40-x
(2)安排生产A、B两种产品的件数有几种方案?试说明理由;
(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.

(1)见解析
(2)共有三种方案:
方案一:A产品23件,B产品17件,
方案二:A产品24件,B产品16件,
方案三:A产品25件,B产品15件;
(3)y=-200x+44000   39400元

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.
(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象在第一象限内交于点C,CD⊥x轴于点D,OD=2AO,求反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点轴的正半轴上,,在上取一点,将纸片沿翻折,使点落在边上的点处,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象上的点A(1,0)及B.

(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b(x-2)2+m的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆千克数与他手中持有的钱(含备用零钱)的关系如图所示,结合图象回答下列问题:

(1) 农民自带的零钱是多少?
(2) 降价前他每千克土豆出售的价格是多少?
(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,问他一共带了多少千克土豆.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y1=x+1的图象与反比例函数(k为常数,且)的图象都经过点A(m,2).

(1)求点A的坐标及反比例函数的解析式;
(2)观察图象,当x>0时,直接写出y1与y2的大小关系.

查看答案和解析>>

同步练习册答案