精英家教网 > 初中数学 > 题目详情

【题目】近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A、B两种型号的空气净化器,两种净化器的销售相关信息见下表:

A型销售数量(台)

B型销售数量(台)

总利润(元)

5

10

2000

10

5

2500


(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?
(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;
(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时,某长方体室内活动场地的总面积为200m2 , 室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内就欧诺个气净化一新,若不考虑空气对流等因素,至少要购买A型空气净化器多少台?

【答案】
(1)解:设每台A型空气净化器的销售利润为x元,每台B型空气净化器的销售利润为y元,

根据题意得:

解得:

答:每台A型空气净化器的销售利润为200元,每台B型空气净化器的销售利润为100元.


(2)解:设购进A型空气净化器m台,则购进B型空气净化器(100﹣m)台,

∵B型空气净化器的进货量不少于A型空气净化器的2倍,

∴100﹣m≥2m,

解得:m≤

设销售完这100台空气净化器后的总利润为w元,

根据题意得:w=200m+100(100﹣m)=100m+10000,

∴w的值随着m的增大而增大,

∴当m=33时,w取最大值,最大值=100×33+10000=13300,此时100﹣m=67.

答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.


(3)解:设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,

根据题意得: [300a+200(5﹣a)]≥200×3,

解得:a≥2.

答:至少要购买A型空气净化器2台.


【解析】(1)等量关系式是:5台A型空气净化器的利润+10台A型空气净化器的利润=2000;10台A型空气净化器的利润+5台A型空气净化器的利润=2500,设未知数,建立方程组,求解即可。
(2)根据B型空气净化器的进货量不少于A型空气净化器的2倍,建立不等式,求出其解集,再列出总利润与m的函数关系式,根据一次函数的性质,即可求出其进货方案。
(3)根据已知建立不等式,求出解集,再求出a的最小整数解。
【考点精析】利用一元一次不等式的解法对题目进行判断即可得到答案,需要熟知步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于( )

A.100°
B.105°
C.115°
D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD1,以AD为边作等边△ADE,过点EEFBC,交AC于点F,连接BF,则下列结论中ABD≌△BCF四边形BDEF是平行四边形;S四边形BDEFSAEF.其中正确的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:
1﹣ ÷ ,其中a是方程a2﹣a﹣6=0的一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.

(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;

(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,过点轴的垂线,点在线段上,连结并延长交直线于点,过点交直线于点.

(1)求的度数,并直接写出直线的解析式;

(2)若点的横坐标为2,求的长;

3)当时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BEAD于点F.

(1)求证:△BDF是等腰三角形;

(2)如图2,过点DDGBE,交BC于点G,连接FGBD于点O.

①判断四边形BFDG的形状,并说明理由;

②若AB=6,AD=8,求FG的长.

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两块直角三角板的直角顶点O重合在一起,若∠BOCAOD,则∠BOC的度数为(  )

A.22.5°B.30°C.45°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解全校2400名学生的阅读兴趣,从中随机抽查了部分同学,就“我最感兴趣的书籍”进行了调查:A.小说、B.散文、C.科普、D.其他(每个同学只能选择一项),进行了相关统计,整理并绘制出两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题

(1)本次抽查中,样本容量为______

(2)a______b______

(3)扇形统计图中,其他类书籍所在扇形的圆心角是______°;

(4)请根据样本数据,估计全校有多少名学生对散文感兴趣

查看答案和解析>>

同步练习册答案