精英家教网 > 初中数学 > 题目详情

【题目】如图1,设D为锐角△ABC内一点,∠ADB=∠ACB+90°.

(1)求证:∠CAD+∠CBD=90°;

(2)如图2,过点BBE⊥BD,BE=BD,连接EC,若ACBD=ADBC,

求证:△ACD∽△BCE;

的值.

【答案】(1)详见解析;(2)①详见解析;②=.

【解析】

(1)如图1,延长CDABE,根据三角形外角的性质得到∠ADE=CAD+ACD,BDE=CBD+BCD,结合已知条件∠ADB=ACB+90°.即可证明.

(2)①∠CAD+CBD=90°,CBD+CBE=90°,根据同角的余角相等即可得到∠CAD=CBE,根据ACBD=ADBC,BD=BE,即可得到根据相似三角形的判定方法即可判定ACD∽△BCE;

②连接DE,根据BEBD,BE=BD,得到BDE是等腰直角三角形,根据等腰直角三角形的性质得到分别判定ACD∽△BCE,ACB∽△DCE,根据相似三角形的性质得到

证明:(1)如图1,延长CDABE,

∵∠ADE=CAD+ACD,

BDE=CBD+BCD,

∴∠ADB=ADE+BDE=CAD+CBD+ACB,

∵∠ADB=ACB+90°.

∴∠CAD+CBD=90°;

(2)①如图2,∵∠CAD+CBD=90°,CBD+CBE=90°,

∴∠CAD=CBE,

ACBD=ADBC,BD=BE,

∴△ACD∽△BCE;

②如图2,连接DE,

BEBD,BE=BD,

∴△BDE是等腰直角三角形,

∵△ACD∽△BCE,

∴∠ACD=BCE,

∴∠ACB=DCE,

∴△ACB∽△DCE,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD

2)分别以点CD为圆心,CD长为半径作弧,交于点MN

3)连接OMMN

根据以上作图过程及所作图形,下列结论中错误的是(

A. ∠COM=∠CODB. OM=MN,则∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在研究相似问题时,甲、乙同学的观点如下:

甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.

乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.

对于两人的观点,下列说法正确的是(

A.甲对,乙不对 B.甲不对,乙对 C.两人都对 D.两人都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点分别是边长为的等边上的动点,点从点向点运动,点从点向点运动,它们同时出发,且它们的速度都为,运动的时间为.

1)当时,求的度数;

2)当为何值时,是直角三角形?

3)如图2,若点在运动到终点后继续在射线上运动,直线交点为,则变化吗?若变化,则说明理由,若不变,则求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:y-2x3成正比例,且x=4y=8.

(1)yx之间的函数关系式;

(2)y=-6时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点B、O分别落在点B1C1处,点B1在x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2在x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则B2的坐标为_____;点B2016的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.

l)第一批车厘子每千克进价多少元?.

2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了,售出后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价元进行促销,结果第二批车厘子的销售利润为1520元,求的值。(利润=售价一进价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACBAC=),将线段BC绕点B逆时针旋转60°得到线段BD

1)如图1,直接写出ABD的大小(用含的式子表示);

2)如图2BCE=150°ABE=60°,判断ABE的形状并加以证明;

3)在(2)的条件下,连结DE,若DEC=45°,求的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,有一,且,已知是由旋转得到的.

请写出旋转中心的坐标是________,旋转角是________度;

设线段所在直线表达式为,试求出当满足什么要求时,

轴上,点在直线上,要使以为顶点的四边形是平行四边形,求所有满足条件点的坐标.

查看答案和解析>>

同步练习册答案