13£®£¨1£©½â·½³Ì×é$\left\{\begin{array}{l}{3y-2x=1}\\{\frac{x+2}{3}=\frac{y+1}{4}}\end{array}\right.$£»
£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{3x+2¡Ü2£¨x+3£©}\\{\frac{2x-1}{3}£¾\frac{x}{2}}\end{array}\right.$£¬²¢Ð´³ö²»µÈʽ×éµÄÕûÊý½â£®

·ÖÎö £¨1£©ÕûÀíºó¢Ù+¢ÚµÃ³ö2x=-4£¬Çó³öx£¬°ÑxµÄÖµ´úÈë¢ÙÇó³öy¼´¿É£»
£¨2£©ÏÈÇó³ö²»µÈʽµÄ½â¼¯£¬ÔÙÇó³ö²»µÈʽ×éµÄ½â¼¯£¬¼´¿ÉµÃ³ö´ð°¸£®

½â´ð ½â£º£¨1£©ÕûÀíµÄ£º$\left\{\begin{array}{l}{-2x+3y=1¢Ù}\\{4x-3y=-5¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£º2x=-4£¬
½âµÃ£ºx=-2£¬
°Ñx=-2´úÈë¢ÙµÃ£º4+3y=1£¬
½âµÃ£ºy=-1£¬
ËùÒÔÔ­·½³Ì×éµÄ½âΪ£º$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$£»

£¨2£©$\left\{\begin{array}{l}{3x+2¡Ü2£¨x+3£©¢Ù}\\{\frac{2x-1}{3}£¾\frac{x}{2}¢Ú}\end{array}\right.$
¡ß½â²»µÈʽ¢ÙµÃ£ºx¡Ü4£¬
½â²»µÈʽ¢ÚµÃ£ºx£¾2£¬
¡à²»µÈʽ×éµÄ½â¼¯Îª2£¼x¡Ü4£¬
¡à²»µÈʽ×éµÄÕûÊý½âΪ3£¬4£®

µãÆÀ ±¾Ì⿼²éÁ˽âÒ»ÔªÒ»´Î²»µÈʽ×飬½â¶þÔªÒ»´Î·½³Ì×飬²»µÈʽ×éµÄÕûÊý½âµÄÓ¦Óã¬ÄܰѶþÔªÒ»´Î·½³Ì×éת»¯³ÉÒ»ÔªÒ»´Î·½³ÌÊǽ⣨1£©µÄ¹Ø¼ü£¬Äܸù¾ÝÕÒ²»µÈʽ×é½â¼¯µÄ¹æÂÉÕÒ³ö²»µÈʽ×éµÄ½â¼¯Êǽ⣨2£©µÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ôڱ߳¤Îª6µÄÕý·½ÐÎABCDÖУ¬½«Õý·½ÐÎABCDÈÆµãAÄæÊ±ÕëÐýת½Ç¶È¦Á£¨0¡ã£¼¦Á£¼90¡ã£©£¬µÃµ½Õý·½ÐÎAEFG£¬EF½»Ïß¶ÎCDÓÚµãP£¬FEµÄÑÓ³¤Ïß½»Ïß¶ÎBCÓÚµãH£¬Á¬½ÓAH¡¢AP£®
£¨1£©ÇóÖ¤£º¡÷ADP¡Õ¡÷AEP£»
£¨2£©¢ÙÇó¡ÏHAPµÄ¶ÈÊý£»¢ÚÅжÏÏß¶ÎHP¡¢BH¡¢DPµÄÊýÁ¿¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Á¬½ÓDE¡¢EC¡¢CF¡¢DFµÃµ½ËıßÐÎCFDE£¬ÔÚÐýת¹ý³ÌÖУ¬ËıßÐÎCFDEÄÜ·ñΪ¾ØÐΣ¿ÈôÄÜ£¬Çó³öBHµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬¡ÏABCµÄƽ·ÖÏß½»ADÓÚµãE£¬ÈôAB=3£¬BC=5£¬ÔòDEµÄ³¤Îª£¨¡¡¡¡£©
A£®1B£®1.5C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô·½³Ì×é$\left\{\begin{array}{l}{x+by=0}\\{x+y=-1}\end{array}\right.$µÄ½âÊÇ$\left\{\begin{array}{l}{x=1}\\{y=£¿}\end{array}\right.$£¬ÆäÖÐyµÄÖµ¿´²»Çå³þÁË£¬ÔòbµÄÖµÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®²»µÈʽ×é$\left\{\begin{array}{l}{x£¼-2}\\{x£¾1}\end{array}\right.$µÄ½â¼¯ÊÇÎ޽⣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁÐÃüÌ⣺
¢ÙÒ»×é¶Ô±ßƽÐÐÇÒÒ»×é¶Ô½ÇÏàµÈµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ»
¢Ú¶Ô½ÇÏß»¥Ïà´¹Ö±ÇÒÏàµÈµÄËıßÐÎÊÇÕý·½ÐΣ»
¢Û˳´ÎÁ¬½á¾ØÐÎËıßÖеãµÃµ½µÄËıßÐÎÊÇÁâÐΣ»
¢Ü¶ÔÓÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¬µ±k£¾0ʱ£¬yËæxµÄÔö´ó¶ø¼õС£»
¢ÝÓ÷´Ö¤·¨Ö¤Ã÷ÃüÌâ¡°¶ÔÓÚÈÎÒâµÄʵÊýa£¬¶¼ÓÐa2¡Ý0¡±Ê±Ó¦ÏȼÙÉèa2¡Ü0£¬
ÆäÖÐÕæÃüÌâ¹²ÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½â·½³Ì×飺$\left\{\begin{array}{l}2x-y=3\\ 4x+3y=11.\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬·Ö±ðÒÔÖ±½ÇÈý½ÇÐεÄÈý±ßÏòÍâ×÷Õý·½ÐÎA£¬B£¬C£®ÒÑÖªSA=64£¬SB=225£¬ÄÇôÕý·½ÐÎCµÄ±ß³¤ÊÇ£¨¡¡¡¡£©
A£®15B£®16C£®17D£®17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®²»ÄÜÅж¨Ö±ÏßMNÊÇÏß¶ÎABµÄÖд¹ÏßµÄÊÇ£¨¡¡¡¡£©
A£®MA=MB£¬NA=NB
B£®MA=MB£¬MN¡ÍAB
C£®MA=NA£¬BM=BN
D£®MA=MB£¬ÇÒµãM²»ÔÚÏß¶ÎABÉÏ£¬MNƽ·ÖAB

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸