精英家教网 > 初中数学 > 题目详情

 

1.如图1,中,,请用直尺和圆规作一条直线,把分割成两个等腰三角形(不写作法,但须保留作图痕迹).

2.已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线并写出分割成的两个等腰三角形顶角的度数.

 

【答案】

 

1.如图,直线即为所求

2.如图2能画一条直线分割成两个等腰三角形,

分割成的两个等腰三角形的顶角分别是

图3不能分割成两个等腰三角形.

 【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,某隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)以矩形一边EF所在直线为x轴,经过隧道顶端最高点H且垂直于EF的直线为y轴,建立如图所示的平面直角坐标系,求出此抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中,用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.
“等周问题”虽然较为繁杂,但其根本思想基于下面2个事实:
事实1:等周长n边形的面积,当图形为正n边形时,其面积最大;
事实2:等周长n边形的面积,当边数n越大时,其面积也越大.
为了理解这些事实的合理性,曙光数学小组走出校门展开了下列课题研究.请你帮助他们解决其中的一些问题.
现有长度为100m的篱笆(可弯曲围成一个区域).
(1)如果用篱笆围成一个长方形鸡场,怎样围才能使鸡场的面积最大?为什么?
(2)如果用篱笆围成一个正五边形鸡场,那么与(1)中的正方形鸡场比较,哪个面积更大?请在事实1的基础上证明事实2:“等周长n边形的面积,当边数n越大时,其面积也越大.”
(3)利用事实1和事实2,请对“等周问题”的重要结论作出较为合理的解释.
(4)爱动脑筋的小明提出一个问题:如果借用一条充分长的直墙,将篱笆围成一个四边形鸡场,为了使鸡场的面积尽量大,所围成的长方形鸡场的长是宽的2倍(如图).你觉得他讲的是否有道理?你有没有更好的方法,使围成的四边形鸡场的面积更大?如果有,请说明你的方法.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道过两点有且只有一条直线.
阅读下面文字,分析其内在涵义,然后回答问题:
如图,同一平面中,任意三点不在同一直线上的四个点A、B、C、D,过每两个点画一条直线,一共可以画出多少条直线呢?我们可以这样来分析:
过A点可以画出三条通过其他三点的直线,过B点也可以画出三条通过其他三点的直线.同样,过C点、D点也分别可以画出三条通过其他三点的直线.这样,一共得到3×4=12条直线,但其中每条直线都重复过一次,如直线AB和直线BA是一条直线,因此,图中一共有
3×42
=6条直线.请你仿照上面分析方法,回答下面问题:
精英家教网
(1)若平面上有五个点A、B、C、D、E,其中任何三点都不在一条直线上,过每两点画一条直线,一共可以画出
 
条直线;
若平面上有符合上述条件的六个点,一共可以画出
 
条直线;
若平面上有符合上述条件的n个点,一共可以画出
 
条直线(用含n的式子表示).
(2)若我校初中24个班之间进行篮球比赛,第一阶段采用单循环比赛(每两个班之间比赛一场),类比上面的分析计算第一阶段比赛的总场次是多少?

查看答案和解析>>

科目:初中数学 来源:单科王牌  九年级数学(上) 题型:044

如图所示,是工人师傅用同一根不带刻度的直角尺作角平分线的示意图.

(1)你认为工人师傅这种作角平分线的方法正确吗?请说明理由.

(2)如图所示中,除了OC平分∠BOA外,你还有哪些结论?写出两个正确结论.

查看答案和解析>>

科目:初中数学 来源:新课标读想用  七年级数学(上)(北师大版) 题型:044

如图所示,一辆汽车在直线形公路AB上由A向B行驶,M、N分别是位于公路两侧的村庄.

(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近,请在图中的公路AB上分别画出点P和点Q的位置.

(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M、N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M越来越远?(分别用文字表述你的结论)

查看答案和解析>>

同步练习册答案