精英家教网 > 初中数学 > 题目详情
(2013•成都一模)(1)计算:2-1-(2011-π)0+
3
cos30°-(-1)2011+|-6|

(2)解方程:2(
1
2
-x)2-(x-
1
2
)-1=0

(3)先化简,再求值:
m2-2m+1
m2-1
÷(m-1-
m-1
m+1
)
,其中m=
3
分析:(1)原式第一项利用负指数公式化简,第二项利用零指数公式化简,第三项利用特殊角的三角函数值化简,第四项利用-1的奇次幂为-1计算,最后一项利用负数的绝对值等于它的相反数化简,合并即可得到结果;
(2)将方程第一项变形后,设y=x-
1
2
,将方程化为关于y的一元二次方程,求出方程的解得到y的值,得到x-
1
2
的值,即可求出方程的解;
(3)将原式被除式分子利用完全平方公式化简,分母利用平方差公式化简,除数通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将m的值代入化简后的式子中计算,即可得到原式的值.
解答:解:(1)原式=
1
2
-1+
3
×
3
2
-(-1)+6=
1
2
-1+
3
2
+1+6=8;
(2)方程变形得:2(x-
1
2
2-(x-
1
2
)-1=0,
设y=x-
1
2
,方程变为2y2-y-1=0,即(2y+1)(y-1)=0,
可得2y+1=0或y-1=0,解得:y=-
1
2
或1,
∴x-
1
2
=-
1
2
或1,
解得:x1=0,x2=
3
2

(3)原式=
(m-1)2
(m+1)(m-1)
÷
(m+1)(m-1)-(m-1)
m+1

=
(m-1)2
(m+1)(m-1)
m+1
m(m-1)
=
1
m

当m=
3
时,原式=
3
3
点评:此题考查了实数的混合运算,利用换元法求一元二次方程,以及分式的化简求值,涉及的知识有:零指数、负指数公式,特殊角的三角函数值,绝对值的代数意义,完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•成都一模)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=
3
,则图中阴影部分的面积是
9
3
-4π
6
9
3
-4π
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补贴措施如下表,其余费用由区财政部门补贴.
添置多媒体所需费用(万元) 补贴百分比
不大于10万元部分 80%
大于10万元不大于m万元部分 50%
大于m万元部分 20%
其中学校所在的区不同,m的取值也不相同,但市财政部门将m调控在20至40之间(20≤m≤40).试解决下列问题:
(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;
(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;
(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)二次函数y=ax2+bx+c的值恒为正,则a,b,c应满足(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)已知P1(-2,y1),P2(-1,y2),P3(2,y3)是反比例函数y=
2
x
的图象上的三点,则y1,y2,y3的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.若△ADC是边长为1的等边三角形,则PC的长=
1
3
1
3

查看答案和解析>>

同步练习册答案