精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为精英家教网点F.
(1)求证:DF是⊙O的切线;
(2)若
AE
=
DE
,DF=2,求
AD
的长.
分析:(1)连接OD.根据切线的判定定理,只需证DF⊥OD即可;
(2)根据弧长公式,应先求半径和圆心角的度数.根据等弧所对的圆心角相等可得∠5=120°;∠3=30°.根据三角函数可求半径的长,再计算求解.
解答:精英家教网(1)证明:连接OD.
∵AB=AC,∴∠C=∠B.                                  (1分)
∵OD=OB,∴∠B=∠1.
∴∠C=∠1.                                           (2分)
∴OD∥AC,∴∠2=∠FDO.                               (3分)
∵DF⊥AC,∴∠2=90°,∴∠FDO=90°,
即FD⊥OD.
∴FD是圆O的切线.                                     (4分)

(2)解:∵AB是⊙O的直径,∴∠ADB=90°.                     (5分)
∵AC=AB,∴∠3=∠4.                                 (6分)
ED
=
DB
,∵
AE
=
DE
,∴
DE
=
DB
=
AE
.               (7分)
∴∠B=2∠4,∴∠B=60°,∠5=120°,
∴△ABC是等边三角形,∠C=60°.                       (8分)
在Rt△CFD中,sinC=
DF
CD
,CD=
2
sin60°
=
2
3
2
=
4
3
3

∴DB=
4
3
3
,AB=BC=
8
3
3
,∴AO=
4
3
3
.                    (9分)
l
AD
=
nπR
180
=
8
3
9
π.                                 (10分)
点评:此题考查了切线的判定,弧长公式的运用等知识点.证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案