精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,∠B=30°,∠BCD=60°,AD=2,AC平分∠BCD,则BC=________.

6
分析:过点A作AE∥DC,可判断出△ABE是直角三角形,四边形ADCE是菱形,从而求出CE、BE即可得出BC的长度.
解答:
过点A作AE∥DC,
∵AD∥BC,
∴四边形ADCE是平行四边形,
又∵AC平分∠BCD,
∴∠DAC=∠ACE=∠DCA,
∴AD=CD,
∴四边形ADCE是菱形,
∴CE=AD=AE=2,
∵AE∥CD,
∴∠AEB=∠BCD=60°,
又∵∠B=30°,
∴∠BAE=90°,
∴BE=2AE=4,
∴BC=BE+CE=6.
故答案为:6.
点评:本题考查了梯形、菱形的判定及含30°角的直角三角形的性质,属于基础题,解答本题的关键是作出辅助线,构造出直角三角形及菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案