精英家教网 > 初中数学 > 题目详情
8.(1)$\left\{\begin{array}{l}{3x=1-2y}\\{5x-4y=31}\end{array}\right.$          (2)$\left\{\begin{array}{l}{4(x-y-1)=3(1-y)-2}\\{\frac{x}{2}+\frac{y}{3}=2}\end{array}\right.$.

分析 (1)利用代入消元法解出方程组即可;
(2)利用加减消元法解出方程组.

解答 解:(1)$\left\{\begin{array}{l}{3x=1-2y①}\\{5x-4y=31②}\end{array}\right.$,
由①得,2y=1-3x③,
把③代入②得,5x-2(1-3x)=31,
解得,x=3,
把x=3代入③得,y=-4,
则方程组的解为:$\left\{\begin{array}{l}{x=3}\\{y=-4}\end{array}\right.$;
(2)整理得,$\left\{\begin{array}{l}{4x-y=5①}\\{3x+2y=12②}\end{array}\right.$,
①×2+②得,11x=22,
解得,x=2,
把x=2代入①得,y=3,
则方程组的解为:$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$.

点评 本题考查的是二元一次方程组的解法,代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值;加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.因式分解
(1)2x2-16x+32
(2)mx4-81m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图的方格纸上画有AB、CD两条线段,按下列要求作图.

(1)请你在图①中画出线段AB、CD关于点E成中心对称的图形;
(2)请你在图②中画出线段AB关于CD所在直线成轴对称的图形;
(3)请你在图③中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,?OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=$\frac{m}{x}$(x>0)的图象经过点A(1,4).
(1)求反比例函数的关系式和点B的坐标;
(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.
①求△AOP的面积;
②在?OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ABC中,AB=AC=4$\sqrt{2}$,一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止,在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE,设运动时间为t秒
(1)在整个运动过程中,当线段QE与线段AB在一条直线上时,求t的值;
(2)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(3)在整个过程中,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;
(4)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.在这一旋转过程中,试判断PM+FN的值是否发生变化?若发生变化,请直接写出变化的范围;若不发生变化,请直接写出此定值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知$\sqrt{2\sqrt{3}-3}$=$\sqrt{\sqrt{3}x}$-$\sqrt{\sqrt{3}y}$(x,y为有理数),则x-y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按图2 的形状拼成一个正方形.
(1)图2的阴影部分的正方形的边长是a-b.
(2)用两种不同的方法求图中阴影部分的面积.
【方法1】S阴影=(a-b)2
【方法2】S阴影=(a+b)2-4ab;
(3)观察图2,写出(a+b)2,(a-b)2,ab 这三个代数式之间的等量关系.
(4)根据(3)题中的等量关系,解决问题:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简,再求值:1-$\frac{m-1}{m}$÷$\frac{{m}^{2}-1}{{m}^{2}+2m}$,其中m满足一元二次方程m2-2m-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知一次函数y=kx+b和y=x+a的图象交于点A,则关于x,y的二元一次方程组$\left\{\begin{array}{l}{kx-y=-b}\\{x-y=-a}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$B.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$C.$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$

查看答案和解析>>

同步练习册答案