精英家教网 > 初中数学 > 题目详情
如图,平面直角坐标系中,点B的坐标为(1,2),过点B作x轴的垂线,垂足为A,连精英家教网接OB,将△OAB沿OB折叠,使点A落在点A′处,A′B与y轴交于点F.
(1)求证:OF=BF;
(2)求BF的长;
(3)求过点A′的双曲线的解析式.
分析:(1)首先根据轴对称的性质可知△OAB≌△OA′B,得出∠OBA=∠OBA′,再由AB∥OF,根据平行线的性质得出∠OBA=∠BOF,那么
∠OBA′=∠BOF,最后根据等角对等边得出OF=BF;
(2)根据轴对称的性质可知△OAB≌△OA′B,得出∠OAB=∠OA′B=90°,AB=A′B=2,OA=OA′=1.如果设OF=x,用含x的代数式表示BF,A′F.在直角△OA′F中,运用勾股定理列出关于x的方程,求出x的值即可;
(3)欲求过点A′的双曲线的解析式,只需求出点A′的坐标.为此,过点A′作A′E⊥x轴,垂足为点E.在直角△FA′O中,先求出sin∠A′OF,cos∠A′OF的值,再由A′E∥OF,得出∠EA′O=∠A′OF.最后在直角△EA′O中,运用三角函数的定义得出OE,A′E的值,从而得出点A′的坐标.
解答:解:(1)∵△OAB≌△OA′B,
∴∠OBA=∠OBA′,
∵AB∥OF,
∴∠OBA=∠BOF,
∴∠OBA′=∠BOF,
∴OF=BF;

(2)∵△OAB≌△OA′B,
∴∠OAB=∠OA′B=90°,AB=A′B=2,OA=OA′=1.
设OF=x,则BF=x,A′F=2-x.
在直角△OA′F中,∵∠OA′F=90°,
∴OF2=0A′2+A′F2
∴x2=12+(2-x)2
解得x=
5
4

∴BF=
5
4


(3)如图,过点A′作A′E⊥x轴,垂足为点E.精英家教网
∵A′E∥OF,
∴∠EA′O=∠A′OF.
∵在直角△FA′O中,sin∠A′OF=
A′F
OF
=
3
4
5
4
=
3
5
,cos∠A′OF=
OA′
OF
=
1
5
4
=
4
5

∴在直角△EA′O中,OE=OA′sin∠EA′O=1×
3
5
=
3
5

A′E=OA′cos∠EA′O=1×
4
5
=
4
5

∴点A′的坐标为(-
3
5
4
5
),
∴过点A′的双曲线的解析式为y=-
12
25x
点评:本题主要考查了轴对称变换、平行线的性质,等腰三角形的判定,勾股定理,三角函数的定义等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平面直角坐标系中,O为直角三角形ABC的直角顶点,∠B=30°,锐角顶点A在双曲线y=
1x
上运动,则B点在函数解析式
 
上运动.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB精英家教网=2
3

(1)求⊙P的半径.
(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,则点O的对应点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足
a+2
+|b-2|+(c-b)2=0
.点D为线段OA上一动点,连接CD.
(1)判断△ABC的形状并说明理由;
(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:
S△CAD
S△DGH
=
AD
GH

(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案