精英家教网 > 初中数学 > 题目详情
6、定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是(  )
分析:根据正比例函数的定义计算.
解答:解:根据定义以及正比例函数的概念,得k-2=0,k=2.
故选C.
点评:此题要理解题目中的定义以及正比例函数的概念,根据正比例函数中的b=0,即可列方程求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y);且规定Pn(x,y)=P1(Pn-1(x,y))(n为大于1的整数).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2).则P2011(1,-1)=(  )
A、(0,21005B、(0,-21005C、(0,-21006D、(0,21006

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•井研县模拟)对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y);且规定Pn(x,y)=P1[Pn-1(x,y)](n为大于1的整数).如P1(1,2)=(3,-1),P2(1,2)=P1[P1(1,2)]=P1(3,-1)=(2,4),P3(1,2)=P1[P2(1,2 )]=P1(2,4)=(6,-2).则P2012(1,-1)=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高新区一模)对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y);且规定Pn(x,y)=P1(Pn-1(x,y))(n为大于1的整数).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2)=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2)=P1(2,4)=(6,-2).则P2012(1,-1)=
(21006,-21006
(21006,-21006

查看答案和解析>>

科目:初中数学 来源: 题型:

定义一种对于三位数abc(a、b、c不完全相同)的“F运算”:重排abc的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc=213时,则

(1)求579经过三次“F运算”的结果(要求写出三次“F运算”的过程);
(2)假设abc中a>b>c,则abc经过一次“F运算”得
99(a-c)
99(a-c)
(用代数式表示);
(3)若任意一个三位数经过若干次“F运算”都会得到一个固定不变的值,那么任意一个四位数也经过若干次这样的“F运算”是否会得到一个定值?若存在,请直接写出这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

定义一种对于三位数
.
abc
(a、b、c不完全相同)的“F运算”:重排
.
abc
的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如
.
abc
=213
时,则

(1)579经过三次“F运算”得
495
495

(2)假设
.
abc
中a>b>c,则
.
abc
经过一次“F运算”得
99(a-c)
99(a-c)
(用代数式表示);
(3)猜想;任意一个三位数经过若干次“F运算’’都会得到一个定值
495
495
,请证明你的猜想.

查看答案和解析>>

同步练习册答案