精英家教网 > 初中数学 > 题目详情
精英家教网如图,A,B是直线l上的两点,且AB=2,两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB所围成图形面积S的最大值是
 
分析:先判断出当r=1时两圆外切,再根据切线的性质可知四边形ABEF是长方形,由S最大=S长方形ABEF-S扇形ACF-S扇形BCE,即可得出结论.
解答:精英家教网解:∵AB=2,
∴当r=1时两圆正好外切,显然当两圆外切时圆弧AC,CB与线段AB所围成图形面积S的值最大,
∴过C作CD垂直AB,
过点C作EF∥AB,分别过点AB作AF⊥EF,BE⊥EF,则四边形ABEF是长方形,
则S最大=S长方形ABEF-S扇形ACF-S扇形BCE
=2×1-2×
1
4
π
=2-
π
2
点评:本题考查的是面积及等积变换,涉及到切线的性质、长方形的面积、扇形的面积公式,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•抚顺)如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.

(1)求此抛物线的解析式;
(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.
①用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;
②在此抛物线上是否存在点D,使∠EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=
13
∠EOC,∠DOE=60°,则∠EOC的度数是
90°
90°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A,B是直线l上两点,则图中有
1
1
条线段,有
4
4
条射线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠
2
2
与∠C是直线BC与
DE
DE
被直线AC所截得的同位角,直线AB与AC被直线DE所截得的内错角有
∠1与∠3,∠2与∠BDE
∠1与∠3,∠2与∠BDE
,∠
C
C
与∠A是直线AB与BC被直线
AC
AC
所截得的同旁内角.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,O是直线AB上的点,∠AOC=40°,OD平分∠BOC.
(1)求∠BOD的度数.
(2)若OE⊥AB,分别求出∠DOE和∠COE的度数.

查看答案和解析>>

同步练习册答案