【题目】如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;
(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.
【答案】(1);(2)P(1,0);(3).
【解析】
试题分析:(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;
(2)由图知:A.B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;
(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.
试题解析:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,得:
,解得:,故抛物线的解析式:.
(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x==1,故P(1,0);
(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:
=,==,=10;
①若MA=MC,则,得:=,解得:m=﹣1;
②若MA=AC,则,得:=10,得:m=;
③若MC=AC,则,得:=10,得:,;
当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;
综上可知,符合条件的M点,且坐标为 M(1,)(1,)(1,﹣1)(1,0).
科目:初中数学 来源: 题型:
【题目】下列各命题都成立,而它们的逆命题不能成立的是( ).
A.两直线平行,同位角相等 B.全等三角形的对应角相等
C.四边相等的四边形是菱形 D.直角三角形中, 斜边的平方等于两直角边的平方和
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016江西省)设抛物线的解析式为 ,过点B1 (1,0 )作x轴的垂线,交抛物线于点A1(1,2 );过点B2 (1,0 )作x轴的垂线,交抛物线于点A2 ,… ;过点 (,0 ) (n为正整数 )作x轴的垂线,交抛物线于点 ,连接 ,得直角三角形.
(1)求a的值;
(2)直接写出线段 ,的长(用含n的式子表示);
(3)在系列Rt△ 中,探究下列问题:
①当n为何值时,Rt△是等腰直角三角形?
②设1≤k<m≤n (k,m均为正整数),问是否存在Rt△与Rt△相似?若存在,求出其相似比;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为平方毫米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com