精英家教网 > 初中数学 > 题目详情
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A,O之间的距离为d。

小题1:如图1,当r<a时,根据d与a,r之间关系,请你将⊙O与正方形的公共点个数填入下表:
d,a,r之间的关系
公共点的个数
d>a+r
0
d=a+r
 
a-r<d<a+r
 
d=a-r
 
d<a-r
 
 
小题2:如图2,当r=a时,根据d与a,r之间关系,请你写出⊙O与正方形的公共点个数,即当r=a时,⊙O与正方形的公共点个数可能有         个。

小题3:如图3,当⊙O与正方形的公共点个数有5个时,r=      (请用a的代数式表示r,不必说明理由)。

小题1:如图①
d、a、r之间关系
公共点的个数
d>a+r
0
d=a+r
1
a-r<d<a+r
2
d=a-r
1
d<a-r
0
所以,当r<a时,⊙O与正方形的公共点的个数可能有0、1、2个;(4分)
小题2:如图②
d、a、r之间关系
公共点的个数
d>a+r
 
0
d=a+r
1
a≤d<a+r
2
d<a
4
所以,当r=a时,⊙O与正方形的公共点个数可能有0、1、2、4个;(8分)
小题3:如图③所示,连接OC.
则OE=OC=r,OF=EF-OE=2a-r.
在Rt△OCF中,由勾股定理得:
OF2+FC2=OC2
即(2a-r)2+a2=r2
4a2-4ar+r2+a2=r2
5a2=4ar,
R=;(12分)
(1)当r<a时,⊙A的直径小于正方形的边长,⊙A与正方形中垂直于直线l的一边相离、相切、相交,三种情况,故可确定⊙O与正方形的交点个数;
(2)当r=a时,⊙O的直径等于正方形的边长,此时会出现⊙A与正方形相离,与正方形一边相切,相交,与正方形四边相切,四种情况,故可确定⊙O与正方形的交点个数;
(3)如图③,当⊙O与正方形有5个公共点时,连接OC,用a、r表示△COF的各边长,在Rt△OCF中,由勾股定理求a、r的关系.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图⊙P的圆心P在⊙O上,⊙O的弦AB所在的直线与⊙P切于C,若⊙P的半径为r,⊙O的半径为R.O和⊙P的面积比为9∶4,且PA=10,PB=4.8,DE=5,C、P、D三点共线

(1)求证:
(2),求AE的长;
(3)连结PD,求sin∠PDA的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.
小题1:直线BD是否与⊙O相切?为什么?
小题2:连接CD,若CD=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA 为⊙O的切线,B、D为⊙O上的两点,如果∠APB=,∠ADB=.(1)试判断直线PB与⊙O的位置关系,并说明理由;(2)如果D点是优弧AB上的一个动点,当且四边形ADBP是菱形时,求扇形OAMD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果圆锥的底面圆的半径是8,母线的长是15,那么这个圆锥侧面展开图的扇形的圆心角的度数是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为( ◆ )
A.8B.5C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以BC为直径的圆0交∆CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2 =AF.AC.
小题1:求△ANM?△ENM;
小题2:求证:FB是圆O的切线
小题3:证明四边形AMEN是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图19,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
小题1:求证:AC平分∠DAB
小题2:过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
小题3:若CD=4,AC=4,求垂线段OE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1和⊙O2的半径分别为2cm和3cm,两圆的圆心距为5cm,则两圆的位置关
系是                                                          
A.外切B.外离C.相交D.内切

查看答案和解析>>

同步练习册答案