【题目】如图1,四边形ABCD是菱形,AD=10,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=6.
(1)求证:DM=BM;
(2)求MH的长;
(3)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;
(4)在(3)的条件下,当点P在边AB上运动时是否存在这样的t值,使∠MPB与∠BCD互为余角,若存在,则求出t值,若不存,在请说明理由.
【答案】(1)见解析;(2)3;(3)①当P在AB之间时,S=-3t+15;②当P在BC之间时,S=5t-25;(4)t=1.
【解析】
(1)由菱形的性质得,∠ACD=∠ACB,CD=CB,根据“SAS”证明△DCM≌△BCM,然后根据全等三角形的性质可得DM=BM;
(2)根据勾股定理即可得到结论;
(3)由△BCM≌△DCM计算出BM=DM,分两种情况计算即可;
(4)由菱形的性质判断出△ADM≌△ABM,再判断出△BMP是等腰三角形,即可.
解:(1)在Rt△ADH中,AD=10,AH=6,
∴DH=8,
∵AC是菱形ABCD的对角线,
∴∠ACD=∠ACB,CD=CB,
在△DCM和△BCM中,
,
∴△DCM≌△BCM(SAS),
∴DM=BM,
(2)在Rt△BHM中,BM=DM,HM=DH-DM=8-DM,BH=AB-AH=4,
根据勾股定理得,DM2-MH2=BH2,
即:DM2-(8-DM)2=16,
∴DM=5,
∴MH=3;
(3)在△BCM和△DCM中,
,
∴△BCM≌△DCM(SAS),
∴BM=DM=5,∠CDM=∠CBM=90°
①当P在AB之间时,S=(10-2t)×3=-3t+15;
②当P在BC之间时,S=(2t-10)×5=5t-25;
(4)存在,
∵∠ADM+∠BAD=90°,∠BCD=∠BAD,
∴∠ADM+∠BCD=90°,
∵∠MPB+∠BCD=90°,
∴∠MPB=∠ADM,
∵四边形ABCD是菱形,
∴∠DAM=∠BAM,
∵AM=AM,
∴△ADM≌△ABM(SAS),
∴∠ADM=∠ABM,
∴∠MPB=∠ABM,
∵MH⊥AB,
∴PH=BH=4,
∴BP=2BH=8,
∵AB=10,
∴AP=2,
∴t==1
科目:初中数学 来源: 题型:
【题目】已知:△ABC与△A'B'C在平面直角坐标系中的位置如图.
(1)分别写出B、B'的坐标:B______;B′______;
(2)若点P(a,b)是△ABC内部一点,则平移后△A'B'C内的对应点P′的坐标为______;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.
(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.
(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.
请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把6张长为a、宽为b(a>b)的小长方形纸片不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示,设这两个长方形的面积的差为S.当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a、b满足( )
A. a=1.5bB. a=2.5bC. a=3bD. a=2b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知, 是一次函数的图象和反比例函数的图象的两个交点.
(1) 求一次函数、反比例函数的关系式;
(2) 求△AOB的面积.
(3) 当自变量x满足什么条件时,y1>y2 .(直接写出答案)
(4)将反比例函数的图象向右平移n(n>0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y3.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.
(1)求△ABC的边AB上的高h.
(2)设DN=x,且,当x取何值时,水池DEFN的面积最大?
(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连结CM,若CM=1,则FG的长为 .
(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程:
如图,∠1+∠2=230°,b∥c,则∠1,∠2,∠3,∠4各是多少度?
解:∵∠1=∠2(__________________),
∠1+∠2=230°,
∴∠1=∠2=___________(填度数).
∵b∥c,
∴∠4=∠2=_______(填度数)(_______________________________),
∠2+∠3=180°(________________________________),
∴∠3=180°-∠2=____________(填度数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com