精英家教网 > 初中数学 > 题目详情

【题目】如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是

【答案】1
【解析】解:如图,连接DE. 设AC=x,则BC=2﹣x,
∵△ACD和△BCE分别是等腰直角三角形,
∴∠DCA=45°,∠ECB=45°,DC= ,CE= (2﹣x),
∴∠DCE=90°,
故DE2=DC2+CE2= x2+ (2﹣x)2=x2﹣2x+2=(x﹣1)2+1,
当x=1时,DE2取得最小值,DE也取得最小值,最小值为1.
故答案为:1.

设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式,利用函数的知识进行解答即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是(  )
A.PC=PD
B.∠CPD=∠DOP
C.∠CPO=∠DPO
D.OC=OD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

5

y

12

5

0

﹣3

﹣4

﹣3

0

5

12

给出了结论:
1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;
2)当 时,y<0;
3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)解方程:
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h到达B地.如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:
(1)分别计算甲、乙两车的速度及a的值;
(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据 ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:|﹣ |﹣20120﹣sin30°;
(2)化简:(a﹣b)2+b(2a+b).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”

(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究;
如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;
(3)应用拓展;
如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案