精英家教网 > 初中数学 > 题目详情

【题目】
(1)计算:|﹣ |﹣20120﹣sin30°;
(2)化简:(a﹣b)2+b(2a+b).

【答案】
(1)解:原式= ﹣1﹣

=﹣1


(2)解:原式=a2+b2﹣2ab+2ab+b2

=a2+2b2


【解析】(1)分别根据绝对值的性质、0指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先去括号,再合并同类项即可.
【考点精析】通过灵活运用零指数幂法则和特殊角的三角函数值,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y= x+ 与两坐标轴分别交于A、B两点.
(1)求∠ABO的度数;
(2)过A的直线l交x轴半轴于C,AB=AC,求直线l的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4, = ,则CF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AC⊥AB,AB=2 ,AC=2,点D是以AB为直径的半圆O上一动点,DE⊥CD交直线AB于点E,设∠DAB=α(0°<α<90°).
(1)当α=18°时,求 的长;
(2)当α=30°时,求线段BE的长;
(3)若要使点E在线段BA的延长线上,则α的取值范围是(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)|﹣4|×( ﹣1)0﹣2
(2)解不等式:3x>2(x+1)﹣1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为(  )
A.
B.
C.
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB= ,则阴影部分的面积是(  )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案