精英家教网 > 初中数学 > 题目详情
3.若x2-mx+$\frac{9}{4}$是完全平方式,则m=±3.

分析 当二次项系数为1时,完全平方式满足:一次项系数一半的平方等于常数项,即($\frac{m}{2}$)2=$\frac{9}{4}$,由此可求m的值.

解答 解:∵x2-mx+$\frac{9}{4}$是完全平方式,
∴x2-mx+$\frac{9}{4}$=(x-$\frac{3}{2}$)2
则m=±3.
故答案为:±3.

点评 此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,等边△ABC中,D、E分别为BC、AC上一点,且BD=CE.
(1)求证:△BMD∽△ABD;
(2)过A作AN⊥BE于N,若BD=$\frac{3}{2}$,AN=2$\sqrt{3}$,求DM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下面的变形规律:
$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}$-1,$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\sqrt{3}-\sqrt{2}$,$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\sqrt{4}-\sqrt{3}$,$\frac{1}{\sqrt{5}+\sqrt{4}}$=$\sqrt{5}-\sqrt{4}$…
解答下面的问题:
(1)若n为正整数,请你猜想$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$.
(2)计算($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2013}+\sqrt{2012}}$)×($\sqrt{2013}$+1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如果一个正数的平方根是2m+5和m-2,那么m=9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算
(1)$\frac{1}{3}$$\sqrt{0.09}$+$\frac{1}{5}\sqrt{0.25}$;
(2)$\sqrt{2\frac{1}{4}}$-(-0.5)-2
(3)$\sqrt{1\frac{7}{9}×1\frac{17}{64}}$;
(4)$\sqrt{(-\frac{2}{5})^{2}}$-$\sqrt{(-6)^{2}}$+$\sqrt{1-(\frac{4}{5})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.$\sqrt{(x-2)^{2}}$+$\sqrt{(x-y+3)^{2}}$=0,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知a2-3a+1=0,求$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}+5}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列代数式中,符合书写格式的是(  )
A.$\frac{{a}^{2}b}{4}$B.2$\frac{1}{3}$abC.a×b÷2D.a×2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.为调查某校学生一学期课外书的阅读量情况,从全校学生中随机抽取50名学生的阅读情况进行分析,并规定如下:设一个学生一学期阅读课外书籍本数为n,当0≤n<5时,该学生为一般读者;当5≤n<10时,该学生为良好读者;当n≥10时,该学生为优秀读者.
随机抽取的50名学生一学期阅读课外书的本数数据如下:
阅读本数n02456810121416
人数112312115852
根据以上数据回答下列问题:
(1)请你估计在全校学生中任意抽取一个学生,是良好读者的概率是多少?(直接写出结果)
(2)在样本中为一般读者的学生中随机抽取2人,用树状图或列表法求抽得2人的课外书籍阅读本数都为4本的概率.

查看答案和解析>>

同步练习册答案