精英家教网 > 初中数学 > 题目详情

如图,D、E、F分别为等边△ABC中边BC、AC、AB的中点,M是BC边上一动点(不与D点重合).△EMG是等边三角形,连接CG、DG.下列结论:①S四边形AFME=数学公式S△ABC; ②△FBM∽△MCG;③CG∥AB; ④DG=FM.其中结论正确的是


  1. A.
    只有③④
  2. B.
    只有①②④
  3. C.
    只有①③④
  4. D.
    ①②③④
C
分析:首先连接EF,DE,DF,由D、E、F分别为等边△ABC中边BC、AC、AB的中点,根据三角形中位线的性质,可得S四边形AFDE=S△ABC,又由△DEF与△MEF等高等底,故S△DEF=S△MEF,即可得:①S四边形AFME=S△ABC;易证得△EDC是等边三角形,然后可得△MED≌△GEC,即可判定∠BCG=∠ABC=60°,即可得CG∥AB;又由△FDM≌△DCG,可得DG=FM.
解答:连接EF,DE,DF,
∵D、E、F分别为等边△ABC中边BC、AC、AB的中点,
∴EF∥BC,DE∥AB,DF∥AC,EF=BC,
∴△AEF∽△ACB,△EFD∽△BCA,

∴S四边形AFDE=S△ABC
∵S△DEF=S△MEF
∴S四边形AFME=S△ABC;故①正确;
∵△ABC与△EMG是等边三角形,
∴∠ECD=60°,EM=EG,AB=AC,
∴DE=EC=AC,
∴△EDC是等边三角形,
∴∠DEC=60°,
∴∠MED+∠DEG=∠DEG+∠GEC=60°,
∴∠MED=∠GEC,
在△MED和△GEC中,

∴△MED≌△GEC(SAS),
∴∠ECG=∠EDG=180°-∠EDC=120°,
∵∠ACB=60°,
∴∠BCG=∠ABC=60°,
∴CG∥AB;故③正确;
∵∠B=∠MCG=60°,
而∠BFM不一定等于∠CMG,
∴△FBM与△MCG不一定相似;故②错误;
∵△MED≌△GEC,
∴DM=GC,
∵DF∥AC,
∴∠FDM=∠ACB=60°,
∵CD=DE=DF,
在△FDM和△DCG中,

∴△FDM≌△DCG(SAS),
∴DG=FM;故④正确.
故选C.
点评:此题考查了等边三角形的性质、全等三角形的判定与性质、三角形中位线的性质以及相似三角形的判定.此题综合性很强,难度较大,解题的关键是掌握数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).
(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)
(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某花木场有一块形如等腰梯形ABCD的空地(如图),各边中点分别为E、F、G、H,测得对角线AC=5m,若用篱笆围成四边形EFGH的场地,则需篱笆总长度为
 
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图中所有的线段可分别表示为
线段AB,BC,AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,经过原点O的⊙C分别与x轴、y轴交于点A、B,P为
OBA
上一点.若∠OPA=60°,OA=4
3
,则OB的长为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A,
E之间,连接CE、CF、EF,有下列四个结论:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等边三角形;  ④CG⊥AE,
请把你认为正确的结论的序号填在横线上
①②③
①②③

查看答案和解析>>

同步练习册答案