精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE,交AB于点M
(1)求证:△AMD≌△BME;
(2)若N是CD中点,且MN=7,BE=3,求BC的长.

(1)证明:∵AD∥BC,
∴∠A=∠MBE,∠ADM=∠E,
在△AMD和△BME中,

∴△AMD≌△BME(ASA);

(2)解:∵△AMD≌△BME,
∴MD=ME,
又∵ND=NC,
∴MN是△DEC的中位线,
∴MN=EC,
∴EC=2MN=2×7=14,
∴BC=EC-EB=14-3=11.
分析:(1)根据两直线平行,内错角相等可得,∠A=∠MBE,∠ADM=∠E,然后利用“角边角”即可证明△AMD和△BME全等;
(2)先判定MN是△DEC的中位线,然后根据三角形的中位线等于第三边的一半求出EC的长度,再根据BC=EC-BE代入数据计算即可得解.
点评:本题考查了梯形,全等三角形的判定与性质,三角形的中位线定理,根据梯形的两底边平行求出相等的角是证明三角形全等的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案