
解:(1)连接OE,OD,
在△ABC中,∠C=90°,AC+BC=8,
∵AC=2,
∴BC=6;
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形,
tan∠B=tan∠AOD=

=

=

,解得OD=

,
∴圆的半径为

;
(2)∵AC=x,BC=8-x,
在直角三角形ABC中,tanB=

=

,
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形.
tan∠AOD=tanB=

=

=

,
解得y=-

x
2+x.
分析:(1)连接OD,OE,由△ABC是直角三角形,以O为圆心的⊙O分别与AC,BC相切于点D,E,可知OD∥BC,在△ADO中,解得半径.
(2)由题意可知,OD∥BC,∠AOD=∠B,则两角正切值相等,进而列出关系式.
点评:本题主要考查切线的性质和解三角形的相关知识点,不是很难.