精英家教网 > 初中数学 > 题目详情
1.在实数$\sqrt{4}$、$\sqrt{3}$、$\frac{1}{3}$、0.$\stackrel{•}{3}$、π、2.1234567891011121314…(自然数依次排列)、$\root{3}{-8}$中,无理数有(  )
A.2个B.3个C.4个D.5个

分析 根据无理数的定义:无限不循环小数叫做无理数可得答案.

解答 解:无理数有$\sqrt{3}$,π,2.1234567891011121314…(自然数依次排列,共3个,
故选:B.

点评 此题主要考查了无理数,关键是掌握无理数定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,把周长为22的△AOB放在平面直角坐标系中,OB在x轴的正半轴上,AO=AB=6,将△AOB绕点B按顺时针方向旋转一定角度后得到三角形A′O′B′,若点A的对应点A′在x轴上,则点O′的横坐标为$\frac{55}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在矩形ABCD中,AD=acm,AB=bcm,(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动.⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原路返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).
(1)如图①,点P从A→B→C→D,全程共移动了a+2bcm(用含a、b的代数式表示);
(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;
(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.九(3)班“2016年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,则小芳获奖的概率是$\frac{1}{2}$;
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回洗匀后再翻一张;小明同时翻开两张纸牌.他们各自翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?分析说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.
奖项一等奖二等奖三等奖
|x||x|=4|x|=31≤|x|<3
(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;
(2)是否每次抽奖都会获奖,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知2a=-5b,则$\frac{a}{b}$的值为(  )
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.$\frac{5}{2}$D.-$\frac{5}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.分解因式:
(1)4a2-16;
(2)m2(m-1)+4(1-m).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:4sin60°+|3-$\sqrt{12}$|-($\frac{1}{2}$)-1+(π-2016)0

查看答案和解析>>

同步练习册答案