精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C.
(1)求证:∠AED=∠ADC,∠DEC=∠B;
(2)求证:AB2=AE•AC.

证明:(1)在△ADE和△ACD中,
∵∠ADE=∠C,∠DAE=∠DAE,
∴∠AED=180°-∠DAE-∠ADE,
∠ADC=180°-∠DAE-∠C,
∴∠AED=∠ADC.
∵∠AED+∠DEC=180°,
∠ADB+∠ADC=180°,
∴∠DEC=∠ADB,
又∵AB=AD,
∴∠ADB=∠B,
∴∠DEC=∠B.

(2)在△ADE和△ACD中,
由(1)知∠ADE=∠C,∠AED=∠ADC,
∴△ADE∽△ACD,

即AD2=AE•AC.
又AB=AD,
∴AB2=AE•AC.
分析:(1)根据三角形的内角和定理可证∠AED=∠ADC,∠DEC=∠B;
(2)根据相似三角形的判定,由AA可证△ADE∽△ACD,得到,即AD2=AE•AC.又AB=AD,即证AB2=AE•AC.
点评:本题考查了三角形的内角和定理,等腰三角形的性质,相似三角形的判定等知识点,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案